18 research outputs found

    Interplast Italy: A 20-year plastic and reconstructive surgery humanitarian experience in developing countries

    No full text
    BACKGROUND:: Interplast Italy is a nongovernment, nonprofit organization with the aim of providing high-quality standard reconstructive procedures, contributing to local medical and nursing education, in those countries where this is not available or where the local resources are inadequate to meet local needs. A recent debate about the real aim and the effectiveness of this kind of health support strategy in developing countries has been raised. METHODS:: The authors report a 20-year experience, explaining operative strategy, activities, and results, and contributing to the development and improvement of the philosophy of humanitarian missions. RESULTS:: Since 1988, 47 missions and 5235 operations have been performed. A total of 2286 patients (43.7 percent) were younger than 18 years, and 2949 (56.3 percent) were above that age. Congenital cleft deformity was the most common diagnosis in 2415 patients (46.13 percent). Patients suffering from postburn contractures were operated on in 1956 cases (37.36 percent). The number of postburn children operated on was 922 (17.6 percent). CONCLUSIONS:: Cooperation with local physicians is considered mandatory to guarantee adequate patient preselection, to organize the activity in situ, and to plan continuous effective work on a regular basis to build local capacity and facilitate sustainable models for health care. Furthermore, as local surgeons become interested in reconstructive surgery, continuous teaching through a multidisciplinary approach must be paramount. The activity of Interplast Italy contributed to building a plastic surgery service in Bangladesh. Combined multidisciplinary activities linked to established organizations such as the Interplast confederation are desirable to improve results. A link with structured organizations is needed to obtain financial resources to extend targets and to improve activities and outcomes

    Carbonization of residual biomass from river maintenance using waste heat from gasification power plants

    No full text
    This work follows the study presented in Stockholm at the 2017th EUBCE titled: “The Energetic Recover of Biomass from River Maintenance: the REBAF Project”. This previous work focused on the multidisciplinary approach to river maintenance in order to create more resilient systems together with the production of renewable energy. One of the outputs of the preliminary work presented was the distinction of the biomass from river maintenance into two major groups: suitable for gasification and not suitable for gasification. It was necessary to determine suitable and sustainable solutions for the energy recovery of both these groups. The final idea is discussed in this work, it consists in having an integrated system as depicted in Figure 2. The gasifier-engine system is fed with the higher quality biomass; it provides electrical power and hot exhaust gases that are used for the pyrolysis of the low-quality feedstock. The purpose of the pyrolysis reactor is to produce biochar to be used together with clay and other aggregates to produce highly porous, carbon negative, building materials. In this work a prototype reactor was assembled and tested using herbaceous biomass. Several configurations, in terms of exhaust gas temperature and biomass residence time were tested. Results showed the capability of coupling gasification and pyrolysis into integrated systems to increase the overall sustainability of the processes. On the other hand, char quality is strongly affected by the way this interaction is performed due to the quick cool down of the exhaust gases when the connection lines are not properly insulated

    Gasification and wine industry: Report on the use vine pruning as fuel in small -scale gasifiers

    No full text
    Ten different types of vine prunings were tested in a small-scale commercial gasifier produced by the All Power Labs. The specific consumption of the wood biomass power plant was measured for each type of biomass showing results from 0.92 to 1.32 kg/kWh. Syngas analyses and HHV calculation showed results higher than the reference calculated value from the gasification of typical wood biomass. On the other hand, the feeding operations resulted more complicated, here vine prunings are more likely to create bridging problems

    Assessment of hemp hurd-derived biochar produced through different thermochemical processes and evaluation of its potential use as soil amendment

    Get PDF
    Biochar is a carbon-rich and porous material that finds application in different sectors and can be extremely useful in agriculture as soil improver. This paper provides a comparison between biochars produced with different slow pyrolysis processes and biochar produced in a downdraft gasifier. A blend of residual lignocellulosic biomasses (hemp hurd and fir sawdust) was pelletized and used as starting feedstock for the tests. The biochars produced were analyzed and compared. Temperature proved to be the main driver in conditioning the chemical-physical characteristics of the biochars more than residence time or the configuration of the pyrolysis process. The higher the temperature, the higher the carbon and ash content and the biochar pH and the lower the hydrogen content and the char yield. The most noticeable differences between pyrolysis and gasification biochars were the pH and the surface area (considerably higher for gasification char) and the low content of hydrogen in the gasification biochar. Two germinability tests were carried out to assess the possible application of the various biochars as soil amendment. In the first germinability test, watercress seeds were placed in direct contact with the biochar, while in the second they were placed on a blend of soil (90%v/v) and biochar (10%v/v). The biochars with the best performance were those produced at higher temperatures using a purging gas and the gasification biochar (especially mixed with soil)

    Specific and Cumulative Exhaust Gas Emissions in Micro-Scale Generators Fueled by Syngas from Biomass Gasification

    No full text
    Climate change, environmental degradation, and biodiversity loss are prompting production systems to shift from a fossil-based economy to a circular bio-based one. In this context, biomass gasification is a promising alternative to fossil fuels that can contribute to power generation in rural communities and remote areas as well as provide a sustainable source of energy for developed countries. In this work, exhaust gas emissions (CO, NOx, and SO2) of two syngas-fueled micro-scale generators were measured. The first system is a commercial biomass gasifier genset, whereas the second is composed of a laboratory-scale gasifier prototype and a portable petrol generator. For this second facility, emissions were measured both running on gasoline and on syngas. The comparison was performed both on the pollutant concentration and on their cumulative amount. This comparison was made possible by calculating the exhaust gas flow by knowing the combustion stoichiometry and fuel consumption. The results showed a much lower pollutant concentration running on syngas compared to gasoline. In particular, considering the best configurations, every cubic meter of exhaust gas released running on syngas contains about 20 times less CO and almost one-third less NOx compared to gasoline. Moreover, the cumulative amount of emissions released was also considerably lower due to the lower exhaust gas flow (about 25%) released running on syngas

    Multi-phase fluid dynamic of syngas flow across a throttle body in a gasifier-engine system

    No full text
    Electronically controlled throttle valves are often used in syngas fueled engines in order to maintain the engine speed constant under variable load and gas composition conditions. The producer gas carries two macrocategories of pollutants: tars (naphthalene, benzene, toluene etc. in vapor phase) and particulate matter; a high concentration of these species leads, almost certainly, to governor stuck or failure. These malfunctions force to engine shutdown. Since it is not always possible to move towards to a better syngas filtration, especially on small scale systems, it is fundamental to investigate the way of fouling of this device. This preliminary study lead to the conclusion that a combined CFD and psychrometric approach is required for a better comprehension of the fouling phenomena

    Study of copper content distribution through the thermochemical conversion chain of vine pruning biomass

    No full text
    Viticulture is mostly affected by a continuous use of copper-based fungicides to contrast fungal diseases. This treatment, used in both traditional and organic cultures, results in a considerable accumulation of Cu in the top soil, then into plants and soil biota. Furthermore, Copper tends to migrate into air, water and soil ecosystem, posing serious threats to the environment and human health because of its toxicity. At the same time, vineyard pruning represent a valiant woody biomass source for renewable energy production through gasification, the thermochemical process where carbonaceous material is converted into a gaseous flammable fuel called syngas. Currently, one of the important challenges for bioenergy production through gasification is the management of heavy metal-contaminated biomasses used as fuel. This study is aimed to investigate the distribution of copper through thermochemical conversion chain of wood grape, from biomass to electrical and thermal energy production. Starting to the amount of Cu based fertilizers applied to traditional and organic viticulture, the heavy metal residues have been checked and analyzed into ashes biomass derived, into gas emissions coming out from PP20 gasifier and into biochar as gasification process by-product. Inductively coupled plasma mass spectrometry (ICP-MS), and X-ray Fluorescence spectroscopy (XRF) methods have been performed in order to quantify the amount of residual Copper into the different tested arrays. The assessment of Cu persistence along the thermochemical treatment chain of grape biomass is provided. © 2019 ETA-Florence Renewable Energies

    Gasification of cotton crop residues for combined power and biochar production in Mozambique

    No full text
    Cotton agricultural industry is an important sector for some developing countries, whose energy consumption is dramatically rising. Here, biomass is the most important source of energy, but they are used in an inefficient way, causing atmospheric pollution and wasting resources. Combined energy generation and biochar production using cotton residues briquettes as fuel in a PP20 gasifier plant is investigated. The machine has demonstrated similar performances to its “conventional” use: 14% global efficiency and 1.16 kg/kWhelspecific consumption of cotton briquettes are observed. It is calculated that one-hectare field can generate more than 4 MWh and about 130 kg of biochar per year. Biochar represents a valuable by-product; if used as amendment for cotton growth it can improve the soil conditions, both decreasing the need of fertilizers up to 50%. A circular economic model based on cotton waste gasification is proposed. Clean and affordable energy can be produced, in order to promote a sustainable development of rural areas

    Energy production and carbon sequestration in wet areas of Emilia Romagna region, the role of Arundo Donax

    No full text
    This work investigated the utilization of giant reed as energy crop applied marginal areas of the municipality cluster "Unione Terre d'Argine" (UTA), Northern Italy. On one hand, the researchers modeled the giant reed productivity in terms of ton/year for each town of the cluster. They focused on those areas neighboring the local rivers and channels kept unused for farming activities: i.e. riverbanks or detention basin shores. On the other hand, experimental tests were performed to determine the behavior of giant reed as fuel in pilotscale gasification power plants. Results showed the high potential of small or pilot-scale gasifiers to increase the sustainability of river maintenance operations. From its gasification it is possible to produce electrical power together with biochar. Biochar is a powerful soil amendment that can be used straight in the riverbanks. The tandem process between giant reed growth and its gasification leads to 150 kg of CO2 sequestered for every ton of giant reed processed. Furthermore, the energy production from waste biomasses will help to perform better and more regular maintenance operation to the local rivers and channels, thus reducing the negative effects of possible floods
    corecore