16,072 research outputs found
Magnetoconductance of carbon nanotube p-n junctions
The magnetoconductance of p-n junctions formed in clean single wall carbon
nanotubes is studied in the noninteracting electron approximation and
perturbatively in electron-electron interaction, in the geometry where a
magnetic field is along the tube axis. For long junctions the low temperature
magnetoconductance is anomalously large: the relative change in the conductance
becomes of order unity even when the flux through the tube is much smaller than
the flux quantum. The magnetoconductance is negative for metallic tubes. For
semiconducting and small gap tubes the magnetoconductance is nonmonotonic;
positive at small and negative at large fields.Comment: 5 pages, 2 figure
Economic Analysis in the Pacific Northwest Land Resources Project: Theoretical Considerations and Preliminary Results
The Pacific Northwest Land Resources Inventory Demonstration Project i s an a ttempt to combine a whole spectrum of heterogeneous geographic, institutional and applications elements in a synergistic approach to the evaluation of remote sensing techniques. This diversity is the prime motivating factor behind a theoretical investigation of alternative economic analysis procedures. For a multitude of reasons--simplicity, ease of understanding, financial constraints and credibility, among others--cost-effectiveness emerges as the most practical tool for conducting such evaluation determinatIons in the Pacific Northwest. Preliminary findings in two water resource application areas suggest, in conformity with most published studies, that Lands at-aided data collection methods enjoy substantial cost advantages over alternative techniques. The pntential for sensitivity analysis based on cost/accuracy tradeoffs is considered on a theoretical plane in the absence of current accuracy figures concerning the Landsat-aided approach
Recommended from our members
Baylisascaris procyonis: an emerging helminthic zoonosis.
Baylisascaris procyonis, a roundworm infection of raccoons, is emerging as an important helminthic zoonosis, principally affecting young children. Raccoons have increasingly become peridomestic animals living in close proximity to human residences. When B. procyonis eggs are ingested by a host other than a raccoon, migration of larvae through tissue, termed larval migrans, ensues. This larval infection can invade the brain and eye, causing severe disease and death. The prevalence of B. procyonis infection in raccoons is often high, and infected animals can shed enormous numbers of eggs in their feces. These eggs can survive in the environment for extended periods of time, and the infectious dose of B. procyonis is relatively low. Therefore, the risk for human exposure and infection may be greater than is currently recognized
The Purple Haze of Eta Carinae: Binary-Induced Variability?
Asymmetric variability in ultraviolet images of the Homunculus obtained with
the Advanced Camera for Surveys/High Resolution Camera on the Hubble Space
Telescope suggests that Eta Carinae is indeed a binary system. Images obtained
before, during, and after the recent ``spectroscopic event'' in 2003.5 show
alternating patterns of bright spots and shadows on opposite sides of the star
before and after the event, providing a strong geometric argument for an
azimuthally-evolving, asymmetric UV radiation field as one might predict in
some binary models. The simplest interpretation of these UV images, where
excess UV escapes from the secondary star in the direction away from the
primary, places the major axis of the eccentric orbit roughly perpendicular to
our line of sight, sharing the same equatorial plane as the Homunculus, and
with apastron for the hot secondary star oriented toward the southwest of the
primary. However, other orbital orientations may be allowed with more
complicated geometries. Selective UV illumination of the wind and ejecta may be
partly responsible for line profile variations seen in spectra. The brightness
asymmetries cannot be explained plausibly with delays due to light travel time
alone, so a single-star model would require a seriously asymmetric shell
ejection.Comment: 8 pages, fig 1 in color, accepted by ApJ Letter
Forestland type identification and analysis in Western Massachussetts: A linkage of a LANDSAT forest inventory to an optimization study
Digital land cover files derived from computer processing of LANDSAT and soil productivity data were linked and used by linear programming model to determine production of forested areas under different management strategies. Results of model include maps and data graphics for four-county region in Western Massachusetts
MSFC Skylab Apollo Telescope Mount summary mission report
A summary of the Apollo Telescope Mount (ATM) performance during the 8.5-month Skylab mission is presented. A brief description of each ATM system, system performance summaries, discussion of all significant ATM anomalies which occurred during the Skylab mission, and, in an appendix, a summary of the Skylab ATM Calibration Rocket Project (CALROC) are provided. The text is supplemented and amplified by photographs, drawings, curves, and tables. The report shows that the ATM not only met, but exceeded premission performance criteria, and that participation of man in space for this scientific investigation greatly enhanced the quality and quantity of the data attained
Quantized Non-Abelian Monopoles on S^3
A possible electric-magnetic duality suggests that the confinement of
non-Abelian electric charges manifests itself as a perturbative quantum effect
for the dual magnetic charges. Motivated by this possibility, we study vacuum
fluctuations around a non-Abelian monopole-antimonopole pair treated as point
objects with charges g=\pm n/2 (n=1,2,...), and placed on the antipodes of a
three sphere of radius R. We explicitly find all the fluctuation modes by
linearizing and solving the Yang-Mills equations about this background field on
a three sphere. We recover, generalize and extend earlier results, including
those on the stability analysis of non-Abelian magnetic monopoles. We find that
for g \ge 1 monopoles there is an unstable mode that tends to squeeze magnetic
flux in the angular directions. We sum the vacuum energy contributions of the
fluctuation modes for the g=1/2 case and find oscillatory dependence on the
cutoff scale. Subject to certain assumptions, we find that the contribution of
the fluctuation modes to the quantum zero point energy behaves as -R^{-2/3} and
hence decays more slowly than the classical -R^{-1} Coulomb potential for large
R. However, this correction to the zero point energy does not agree with the
linear growth expected if the monopoles are confined.Comment: 18 pages, 5 figures. Minor changes, reference list update
MSFC Skylab Apollo Telescope Mount
A technical history and management critique of the Skylab Apollo Telescope Mount (ATM) from initial conception through the design, manufacturing, testing and prelaunch phases is presented. A mission performance summary provides a general overview of the ATM's achievements in relationship to its design goals. Recommendations and conclusions applicable to hardware design, test program philosophy and performance, and program management techniques for the ATM with potential application to future programs are also discussed
Nonlinear modes in the harmonic PT-symmetric potential
We study the families of nonlinear modes described by the nonlinear
Schr\"odinger equation with the PT-symmetric harmonic potential . The found nonlinear modes display a number of interesting features. In
particular, we have observed that the modes, bifurcating from the different
eigenstates of the underlying linear problem, can actually belong to the same
family of nonlinear modes. We also show that by proper adjustment of the
coefficient it is possible to enhance stability of small-amplitude and
strongly nonlinear modes comparing to the well-studied case of the real
harmonic potential.Comment: 7 pages, 2 figures; accepted to Phys. Rev.
Ion Trap Mass Spectrometers for Identity, Abundance and Behavior of Volatiles on the Moon
NASA GSFC and The Open University (UK) are collaborating to deploy an Ion Trap Mass Spectrometer on the Moon to investigate the lunar water cycle. The ITMS is flight-proven throughthe Rosetta Philae comet lander mission. It is also being developed under ESA funding to analyse samples drilled from beneath the lunar surface on the Roscosmos Luna-27 lander (2025).Now, GSFC and OU will now develop a compact ITMS instrument to study the near-surface lunar exosphere on board a CLPS Astrobotic lander at Lacus Mortis in 2021
- …