6,691 research outputs found

    A microprocessor based anti-aliasing filter for a PCM system

    Get PDF
    Described is the design and evaluation of a microprocessor based digital filter. The filter was made to investigate the feasibility of a digital replacement for the analog pre-sampling filters used in telemetry systems at the NASA Ames-Dryden Flight Research Facility (DFRF). The digital filter will utilize an Intel 2920 Analog Signal Processor (ASP) chip. Testing includes measurements of: (1) the filter frequency response and, (2) the filter signal resolution. The evaluation of the digital filter was made on the basis of circuit size, projected environmental stability and filter resolution. The 2920 based digital filter was found to meet or exceed the pre-sampling filter specifications for limited signal resolution applications

    Derivative analysis of spectral absorption by photosynthetic pigments in the western Sargasso Sea

    Get PDF
    Concurrent measurements of the spectral absorption coefficient and photosynthetic pigmentation of natural particulates were performed to determine the principal pigments responsible for the absorption of spectral irradiance in seawater. The spectral absorption coefficient, Ap(λ), was then analyzed by taking the second and fourth derivatives with respect to wavelength. The wavelength and magnitude of these derivative values provide useful information regarding the identification and quantification of phytoplankton pigments responsible for a given spectral signature. Linear relationships were examined and established between derivative values at selected wavelengths and concentrations of the major tetrapyrrole pigments, specifically chlorophylls a, b, and c. The correlation between derivative values near 526 nm and concentrations of photosynthetic carotenoids was poor and presumably caused by the broad absorption spectra of these pigments. A comparison of the measured particulate absorption coefficient with the absorption coefficient reconstructed for the phytoplankton component revealed that detritus can be a major source of light absorption. The method described here provides a rapid means of obtaining estimates of photosynthetic pigment concentrations in natural samples where absorption can be strongly influenced by detrital matter

    Light emitting diodes as a plant lighting source

    Get PDF
    Electroluminescence in solid materials is defined as the generation of light by the passage of an electric current through a body of solid material under an applied electric field. A specific type of electroluminescence, first noted in 1923, involves the generation of photons when electrons are passed through a p-n junction of certain solid materials (junction of a n-type semiconductor, an electron donor, and a p-type semiconductor, an electron acceptor). The development of this light emitting semiconductor technology dates back less than 30 years. During this period of time, the LED has evolved from a rare and expensive light generating device to one of the most widely used electronic components. A number of LED characteristics are of considerable importance in selecting a light source for plant lighting in a controlled environment facility. Of particular importance is the characteristic that light is generated by an LED at a rate far greater than the corresponding thermal radiation predicted by the bulk temperature of the device as defined by Plank's radiation law. This is in sharp contrast to other light sources, such as an incandescent or high intensity discharge lamp. A plant lighting system for controlled environments must provide plants with an adequate flux of photosynthetically active radiation, plus providing photons in the spectral regions that are involved in the photomorphogenic and phototropic responses that result in normal plant growth and development. Use of light sources that emit photons over a broad spectral range generally meet these two lighting requirements. Since the LED's emit over specific spectral regions, they must be carefully selected so that the levels of photsynthetically active and photomorphogenic and phototropic radiation meet these plant requirements

    Preferences for the selection of unique tRNA primers revealed from analysis of HIV-1 replication in peripheral blood mononuclear cells

    Get PDF
    BACKGROUND: All human immunodeficiency virus (HIV-1) uses a host tRNA(Lys,3 )as the primer for reverse transcription. The tRNA(Lys,3 )is bound to a region on the HIV-1 genome, the primer-binding site (PBS), that is complementary to the 18 terminal nucleotides of tRNA(Lys,3). How HIV-1 selects the tRNA from the intracellular milieu is unresolved. RESULTS: HIV-1 tRNA primer selection has been investigated using viruses in which the primer-binding site (PBS) and a sequence within U5 were altered so as to be complementary to tRNA(Met), tRNA(Pro )or tRNA(Ile). Analysis of the replication of these viruses in human peripheral blood mononuclear cells (PBMC) revealed preferences for the selection of certain tRNAs. HIV-1 with the PBS altered to be complementary to tRNA(Met), with and without the additional mutation in U5 to be complementary to the anticodon of tRNA(Met), stably maintains the PBS complementary to tRNA(Met )following extended in vitro culture in PBMC. In contrast, viruses with either the PBS or PBS and U5 mutated to be complementary to tRNA(Ile )were unstable during in vitro replication in PBMC and reverted to utilize tRNA(Lys,3). Viruses with the PBS altered to be complementary to tRNA(Pro )replicated in PBMC but reverted to use tRNA(Lys,3); viruses with mutations in both the U5 and PBS complementary to tRNA(Pro )maintained this PBS, yet replicated poorly in PBMC. CONCLUSION: The results of these studies demonstrate that HIV-1 has preferences for selection of certain tRNAs for high-level replication in PBMC
    • …
    corecore