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Abstract—This paper presents a new technique for the de- equipment. Therefore, it is important to be able to detect
tec_tion of islqnding (_:onditions in _electrical power system. islanding conditions accurately and quickly.
This problem is especially prevalent in systems with signifiant To achieve this, various islanding-detection techniquesh

penetrations of distributed renewable generation. The prposed - .
technique is based on the application of principal componen been proposed [4], [3], [6]. A detailed review of these tech-

analysis (PCA) to data sets of wide-area frequency measuramnts, Niques has been carried out in [7]. The techniques may be de-
recorded by phasor measurement units. The PCA approach scribed as local or remote (communication-based) appesach

was able to detect islanding accurately and quickly when com | ocal approaches, can be classified into passive and ac-
pared with conventional RoCoF techniques, as well as with # tive methods. Passive methods based on rate-of-change of

frequency difference and change of angle difference methad
recently proposed in the literature. The reliability and accuracy frequency (RoCoF) [3], rate of change of power [8], rate

of the proposed PCA approach is demonstrated using a number Of change of frequency over power [9], vector shift [3], and
of test cases, which consider both islanding and non-islamy harmonic impedance estimation techniques [10] have &tlac

events. The test cases are based on real data, recorded fromyide spread attention. The most popular RoCoF relay, how-
:e‘s’teerg]' phasor measurement units located in the UK power eyer might become unsuccessful if the power imbalancesin th
4 ' islanded system is less than 15% [5]. Moreover, in systems
Index Terms—Wide area monitoring, islanding detection, re- wjth a high penetration of renewable generation there is an
closure, multivariate statistics, synchronized phasor masure- ,reased risk of false detection during load or generation
ments . . . . .
trip events. Active methods perform islanding detection by
injecting a disturbing signal to break the power balancg.[11
. INTRODUCTION For example, in the active frequency drift method, a forced
ENERATION from renewable energy sources is a keghange of frequency approach, the frequency of the voltage i
component in the worldwide strategy to reduce carbdorced to drift up or down in the island [12]. Such approaches
emissions and to maintain a secure and sustainable endtgy become mandatory for islanding prevention with solar PV
supply. In Northern Ireland, for example, a target has be@nsome countries. Active methods tend to have a smaller non-
set to achieve as high as 40% of its electricity consumptigigtection zone compared to passive methods, but have the
from renewable sources by 2020 [1]. A similar target has alglisadvantage of often degrading power quality to a certain
been set by the Republic of Ireland and several other Europetegree.
countries, while the U.S. and China both set a target of atoun Classification-based passive techniques, based on fuzzy-
20% [2]. The integration of significant quantities of dibtried rules [5], wavelet-transforms [4], probabilistic neuratworks
renewable generation into the electricity grid, howevers h[13], support vector machines [13], Bayesian methods [6],
raised serious concerns about its potential impacts onafee sand decision trees [14], [15], have been recently proposed
operation and stability of the grid. In this context the s for islanding detection in the literature. Unfortunatetyes-
islanding detection in the distribution power system pnése tigations of these approaches have been limited to studies o
great challenges, and it is going through a period of renewsihulated power systems, due to their critical demand fgela
interest in both industry and academia. volumes of historic event data. Moreover, the responsefiime
Islanding is a phenomenon where distributed generatdstanding detection based on these approaches is not destus
(e.g. photovoltaic, wind turbines) continue operating @nd in most studies.
ergizing the local loads even though they are isolated fimen t Remote techniques, such as power line signalling and trans-
rest of the utility source [3], [4]. This islanding conditias fer trip schemes, usually rely on communication signalgger
particularly dangerous; if not detected it may endangenmaianding detection. Some new remote or communication-based
tenance personnel. In addition, unsynchronized recommecttechniques, especially PMU-based, have attracted greeat-at
of an island to the main power grid may cause severe damag@® in both industry and academia in recent years. Moreover
to the utility, the distributed generators and other customdeployment cost of these techniques is gradually redeemed
_ _ by their technical good performance [16]. However, remote
X. Liu, D. M. Laverty, R. J. Best, K. Li, D. J. Morrow and S. Mchaoe are K .- L.
with the School of Electronics, Electrical Engineering &wmputer Science, teChn'queS utilized to date often focus on the distributed
Queen’s University Belfast, Belfast, BT9 5AH, U.K. e-mailliu@qub.ac.uk. generator side, and in general cannot provide a real-tirde-wi



area view of the islanding situation, or produce alarming faime leading up to the blackout [23]. The more recent July
system operators [17]. This is particularly important isteyns 2012 Indian blackouts [24] further indicate the urgent nfeed
with high penetrations of renewable generation, which cdhe development of intelligent data analytical tools fodevi
become vulnerable to nuisance tripping of islanding priadac area monitoring ofsynchronized®PMU data to enhance real
To address this problem, reference [17] has recently pexbodime situation awareness. In contrast to [17], in this sty

a PMU-based method, using a frequency difference and tingelligent statistical approach based on PCA is introdubat
change of angle difference approach. Despite the reporthbles the thresholds for event detection to be autorfigtica
success of this method in several real cases, a numberdefermined based on long-term historic data. Moreovelthe
outstanding problems still remain: proach is simple to implement, computationally fast, pdes

1) It requires a number of parameters to be determinéldstraightforward visualization; and has a simple georagtri
and optimized to define the tripping time criteria fOIinterpretation. In addition, it can be used to detect when an

islanding detection. These parameters include threshoialémded systgm IS reconnected _back to_ the transmlgs!dn gn
gd the contribution plots associated with PCA statistas ¢

for the frequency and the angle deviations and thr ) X ) A
settings for the timer. These were originally set bas used to identify the frequency variable which is affected
y an islanding condition.

on experience by the authors. ) - . .
2) Its response time for islanding detection is over It is noted that similar work has been reported previously in

seconds, which exceeds the IEEE standard 1547-2dg3]: Which attempted to apply PCA on PMU data including
[18] where the anti-islanding relay must immediateljf€asurements of frequency, phase angle and voltage magni-
disconnect the distributed generator within 2 seconddd®. but failed to perform islanding detection effecyvélhe

of the formation of an island. The requirement for previous method not only produced too many false alarms, but

response time of under 2 seconds is also defined in ﬁléo the geometrical interpretation of islanding detectias
IEC 61727 standard for PV systems [19]. lost. This is mainly caused by the underlying assumption of

3) Some issues may arise with the proposed islandiﬁ)&Aj where the applied data should be linear and Gaugsian
detection approach owing to its critical dependence fStributed; however, both phase angle and voltage matmitu
the reference frequency and reference phase angle. variables exhibit significant non-Gaussian charactesstor

long-term historic data. Thus, in this paper, only frequenc
This paper attempts to address these problems using\@hiables measured from different locations, which approx
intelligent multivariate statistical approach, relyin@ @rin- jmately follow a normal distribution, are considered. The
cipal component analysis (PCA) of the measurements frafpoposed method has been able to correctly identify istandi
PMUs. This is a challenging proposition because (i) th&ents on the UK power system, as would be evident through
observed phasor measurements are influenced by random Igadal inspection. To the best of our knowledge, this is the
fluctuations that continuously perturb the system equilior fjrst research work that presents: (i) the successful agtjic
slightly and in a non-stationary manner [20]; (ii) other W of the PCA method to real PMU data for islanding detection;
system events such as generator trips, line trips, and sy an approach for geometrically interpreting islandamgents
load also create perturbations in the voltage, frequemy, aang distinguishing them from other non-islanding events.
angles similar to those generated by islanding events; (iii The paper is organized as follows. The relevant PCA-based
the signal-to-noise ratio of PMU data is often low, makingtatistical monitoring theory and related investigatiémsthe
detection of islanding difficult. wide area frequency measurements are presented nexbrgecti
Because of its simplicity, PCA, a data-driven multivariat@| describes the real historic frequency data obtainednfro
projection-based technique, has gained great attention faultiple locations on the UK power system for study, and give
monitoring complex processes, such as those found in th&ults for the PCA applications. Discussion and conchssio

chemical industry [21]. PCA exploits the correlation withi gre presented in Section IV and V, respectively.
the typically large number of recorded variables by defirang

reduced set of score variables that construct a Hotellifig's I
statistic [21]. The mismatch between the recorded varsable
and their reconstruction using these score variables leads
the definition of the Q statistic [22]. The PCA method enabled Principal Component Analysis of Wide Area Frequency
analysis of many sets of measurements simultaneously dgasurements
facilitates the derivation of information to determine et  Principal component analysis, first proposed in 1901 [26],
observed system is in an abnormal condition, with a level @& one of the most popular multivariate dimension reduction
confidence. techniques. It transforms a set of original correlatedalaés
Similar to [17], the proposed islanding detection methoidto a smaller set of uncorrelated ones [27]. These transddr
is based on wide area phasor measurements, and is ableat@ables are known as principal components, which are de-
present a real-time wide-area view of islanding, and ceeatéved in the order of reducing variability with the first pcipal
early warnings for system operators and engineers to niaintaomponent accounting for the most significant variability i
system security. This is motivated by the fact that one difie original data [22]. The transformation can be viewedras a
the key findings of the August 2003 blackout in the U.Srthogonal rotation of the data such that maximum variaion
and Canada was the lack of operator awareness during pinejected onto the new axes, which are defined by the original

PRINCIPAL COMPONENTANALYSIS BASED ISLANDING
DETECTION



TABLE | B. A Geometric View of PCA-Based Islanding Detection
CALCULATION OF CONFIDENCE LIMITS FOR MONITORING STATISTICS

The theoretical basis of a geometric view of the PCA model

Statistic Confidence Limit is well explained in [21], [30]. Definingz = A~'/?t and
T2 =tTA't | S Frn noting thatt = U7'f, the Hotelling statistic/2 = z”z, can be
Q= eTe g-x*(h) viewed as a scaled squared 2-norm (or weighted distance) of

an original frequency sample vector from its mean [21]. More
specifically, theT'? can be used to monitor system deviations
variables. The correlations between the new variablesheill from a target. When the weighted distance, representedeby th
removed after the rotation. T? statistic, is less than a confidence control limit, the syste
PCA identifies the orthogonal directions of maximum variis considered to be on target.
ance in the original data, by performing eigenvector/eigre  For an original data set adequately explained by two
analysis of the sample covariance matrix. A more deta”%ﬁlincipm components, the PCA model can be geometrically
description of PCA can be found in [22]. Lt al. have previ- interpreted in 3 dimensions [30]. If the original data fello
ously applied PCA in statistical monitoring of a nuclear pow a multivariate normal distribution and represent the ndrma
plant waste management process for fault detection [28], agperating conditions, the data scatter can be enclosed in an
in wind farm oscillation monitoring [29]. This section gv@ ellipse whose axes are the principal component loadings [30
brief description of principal component analysis of freqay The elliptical envelope is provided by the statistical cdefice
measurements for islanding detection. limit of the 72 statistic, presented in Table I. If the system
Let f € R™ denote a sample vector storing frequency variables are highly correlated, the elliptical envelopedmes
variables. Assuming that there aé samples for each vari- more elongated [21]. In addition, a third dimension is used t
able, a data matriF € RV*™ is composed with each row explain the deviation from the model plane, representedby t
representing a sample. After scaling so that each column f@sstatistic [30].
zero-mean and unit varianck, can be decomposed into a \when 72 and  statistics are utilized along with their
score matrixT € RV*" and a loading matrixXU € R™*"  yespective confidence limits, it produces a cylindrical in-
(r < m is the number of retained principal components) [22Eontrol region in 3-Dimensional (3-D) space for 3 variables
F—TU” 4+ E 1) explained by two principal components, as iIIustrated_ i9. Fi
1. In the figure, the X’'s represent data collected during in-
whereE is the residual matrix. A scaled sample vedioran Control operation, while the>'s and “+'s show data that violate
be projected on the model subspace, which is spanndd by the T2 and@ statistic, respectively [21], [30].
and the residual subspace, respectively [22]. Furthermore, theT? statistic in Eq. (2) represents the
The geometric simplicity of the PCA decomposition allow¥/eighted distance (Mahalanobis distance) of any point from
the construction of two univariate statistics, a Hoteling>  the target (e.g. 50 Hz for frequency variables in the UK power
statistic that represents significant variation of the rded System). All points projected on the ellipse in the— ¢,
data and is associated with the PCA model plane andPine in Fig. 1 would have the same value Bt statistic.
Q statistic that describes the mismatch between the origidgnce, & statistic chart would detect as a special event any
variables and their projections onto the model plane, he. tPoint projected outside of the ellipse. In contrast7ts, the
variation of the data within the residual subspace. These t# statistic does not directly measure the variations alornt ea

statistics, are defined as follows: eigenvector but measures the total sum of variations in the
residual space. In another words, thestatistic, also known
72 — fTUAUTE = tTA- 1t oy as the squared prediction error, measures the deviatidneof t
2) observations that was not captured by the PCA model. Using
and these two statistics together has been found to be effeative
Q=eTe—fT [I B UUT] £ ©) distinguishing between different types of faults in cheshic

process applications [21]. Here, a similar strategy is used

where A is a diagonal matrix consisting of eigenvalues of the power system context, to geometrically interpret diag
covariance matriXS of scaledF. t = UTf is a score vector, events (where the frequency variables deviate signifigantl
e ¢ R™ is a residual vector anHrepresents an identity matrix.from each other) and distinguish them from non-islanding
Under the assumption that the recorded variables are linexents (where the frequency variables deviate from thestarg
and normally distributed, th@? follows an F-distribution but do not deviate significantly from each other).
[22] and theQ statistic can be approximated by a centya For the special case of monitored frequency variables
distribution [21]. As discussed in [22], the confidence tBni recorded from different sites, a single principal compdrisn
can be obtained as presented in Table |, where p?/2u,  sufficient to capture observed variability due to the highrde
h =2u?/p? andp and p? are the sample mean and variancef correlation between variables. A geometric interpietat
of the @) statistic. for islanding detection using th&? and the(@ statistics of

For on-line wide area power system monitoring, a statisthe PCA method can then be obtained in 2-Dimensional space
cally significant number of violations of these limits, oleast (2-D) as demonstrated in Fig. 2. If the distance from the
one of them, is then indicative of abnormal system behaviasrigin along the principal component line to the projected



o4 load and generation mismatch events where the frequency
variables do not deviate significantly from each other. The
data points represented by ‘+' can only be detected)bgnd

+ + indicate islanding events where the frequency variablesie
—+ —i—+ close to the target. Finally, the data points hot only violate
+ limits in the model space but also in the residual space (i.e.
/__ T they are detected by boffi? andQ), and hence they indicate
— | —] islanding events where the frequency variables have daliat
X X o o significantly from each other and from the 50 Hz target.
X X X @)
X X X X & X o O o
X X x C. Contribution Plots of Monitored Frequency Variables to
] h PCA Statistics
~— Contribution plots identify the contribution of individua

frequency variables to the PCA statistics. If the contitut
Fig. 1. A geometric interpretation for event detection gsihe 72 and the of a particular frequency variable towards the statistic is
Q statistics of PCA in 3-Dt; andt2 are the first and the second principalI islandi it be identified. Th tributi
components, respectively [21]. arge, an islanding site can be identified. The contributén

the ith frequency variable to thé) statistic can be obtained

as follows:
ot Qcont = ®]'f 4)
where ®7 is the ith row of the matrixI — UUT. The
| . variable contribution to th&? statistic, defined in [31], can be
| Iolanding slvye';‘;ge‘em“e | Isdanding eVTedegtmb‘e used to determine if the monitored frequency variable desia
| ! Y significantly from its target.
! n l In summary, the implementation of the proposed PCA-
A i ++++ i © g@ based islanding detection method involves two steps: 1) off
DT + | @@ line PCA modelling using historic data to obtain the priratip
| t ! components and control limits; and 2) on-line monitoring to
| L ___ S determine if an islanding event occurs. Further detailshef t
Normalloperation Le"gd ;:g;i‘gft‘:;‘]’jg‘gflv;ﬁs proposed islanding detection strategy are provided in Fig.
X detectable only by T
oo x X 060° ,l . UK POWER SYSTEM CASE STUDY

A. UK Power System Wide Area Phasor Data

In the UK power grid, a type of single-phase phasor
measurement unit, developed at Queen’s University Belfast
(QUB) as part of the OpenPMU project [32], [33] is installed
at sites of interest for islanding detection, including eutb
data point is larger than the scaled maximum eigenvalueded generation (at 415 V) and main distribution substations
the matrix A, it will be detected by th@? statistic indicating (33 kV). The PMUs report at 10 Hz and measurements of
that the frequency variables have significantly deviatesnfr frequency, voltage magnitude, and voltage phase angleate s
the target (50 Hz), i.e. a load and generation mismatch everd the Internet to a server at QUB for analysis. The location
has occurred. If the total sum of variations in the residuaf the units are highlighted in Fig. 4. The units used in this
space violates the confidence value, it will be detected by thtudy are supported by Scottish and Southern Energy Ltd.

@ statistic indicating the frequency variables have dediate From the UK power system, 7 days of recorded historic
significantly from each other, i.e. an islanding event hafata from 6 sites was used as reference data to determine the
occurred. This holds true due to the simple fact that threlevant normal operational statistics. The data set stathi
frequency variable is a universal parameter for the entivegs  of a total of 5,446,101 synchronous multivariate samples
grid. Essentially, as long as the data points are aligneldthé (with 601,899 samples missing). The histogram plot of the
first principal component directiorny (= x, and the frequency frequency, phase angle difference and voltage magnituhgal
variables are almost equal to each other) with a certaiith its corresponding normal distribution curve and kérne
confidence limit, there is no significant deviation betwedes t density estimate, is shown in Fig. 5. It is clear that the
frequency variables. Otherwise, if data points are nonallj frequency variable approximately follows a normal disirib
with the first principal component directiony & z), then it tion, while the others demonstrate significant non-Gaussia
indicates significant inter-frequency deviations (anndiag characteristics. Due to the limited space, only the frequen
event occurs). This will be further demonstrated in the casariable is analyzed here. More advanced approaches will be
studies presented later. Thus, in Fig. 2, the data pointerepapplied to phase angle difference and voltage data in ourdut
sented by & can only be detected b2, indicating global work, to address the non-Gaussian related issues.

Fig. 2. A geometric interpretation for islanding detectiosing the7'? and
the @ statistics of the PCA method in 2-D.



(a) Off-line PCA model construction to obtain control limits
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Fig. 3. Flow chart of the proposed PCA method for islandinteckon.

TABLE Il

VARIANCE CONTRIBUTION OF PRINCIPAL COMPONENT$PCS)

#PC(s) Percent Variance Captured by PCA Model
Eigenvalue of CoW) [ Variance Captureds
1 5.969 99.48
2 0.011 0.18
3 0.007 0.12
4 0.006 0.11
5 0.006 0.09
6 0.001 0.02

B. PCA Modelling
The reference data set of the frequency variables fromdéta, the Type | error, or the false alarm rate, fromf{eand

sites (f1 - Southern Englandf, - Manchesterfs, f4, f5, f¢ -

@ Shetland Island
é Orkney Island

Fig. 4. OpenPMU Layout in the UK System, revised from [32]eTHumbers
in the circles are the number of PMUs installed at the astmtiBcations.

x10° x10° x10°

Il Histogram bar
2t | — Normal distribution curve
Kernel density estimate 6 ] 12+

k

-10 0 10 0
Phase Angle Difference (°C)

2:5 26 27 28 29
Voltage (V)

4‘5.8 50 56.2
Frequency (Hz)

Fig. 5. Histogram plot of frequency, phase angle differermed voltage
magnitude, along with its corresponding normal distribtcurve, and kernel
density estimate.

collected from different locations in the power grid, whilke
remaining five components capture the noise variance [21].
This agrees with the scatter plot of the frequency variables
of the reference data set, shown in Fig. 6. Thus only the first
principal component is used to construct the PCA model. In
addition, for the 5,446,101 synchronous multivariate nerfiee

Q statistics of the PCA model for a confidence of 99.are

Orkney Islands) were used to produce a covariance matrix. Tl 14% and 0.13%, respectively. This implies that the Type |
eigenvalues of the covariance matrix and the contributibn errors for thel?> and the() statistics are close to the expected
each principal component to the reconstruction of the palgi 0.1%.
data are summarized in Table II.
As expected, the first principal component corresponding both inter-connector trip and islanding events, and thesroth
the largest eigenvalue, captures 9948f the total variance, with loss of load, inter-connector trip and islanding egegnatre
and as such represents the significant system variation gmdsented to verify the proposed PCA method for islanding
the interrelationships between the six frequency vargbldetection.

In the following, two real case studies including one with
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(a) Frequency plot
C. Case 1: Inter-connector Trip and Islanding Events on e
28/09/2012 502

1) Islanding Detection:On 28 September 2012 a inter- §s,
connector trip event occurred between Great Britain (GB) an<
France, which resulted in an instantaneous loss of 1 Gv :
being imported to the GB power grid. In the 10 seconds§499 oy
after the loss, the frequency of the main power system fe 2 ‘ ‘ A
from 50.08 Hz to 49.70 Hz. The resulting rate-of-change o= ** : ' ' L, )
frequency -0.186 Hz/second (calculated over 50 cycledatt .| /1, f2]
north of the UK exceeded the current RoCoF setting of - e o5 e o - s o,
0.125 Hz/second recommended by the UK Grid Code G59/ Frequency 1 (Hz)

[34], which falsely triggered an islanding operation on the (b) PCA results

PMU site, located at a MV substation and lead to the furthely. 7. Case 1 on 28/09/2012. (a) Frequency plot (upper;p&itjse up of
loss of embedded generation. frequency plot (lower plot) (b) A 2-D illustration of the tedata. The blue dot

. epresents the reference ddfa, f2], the red dot and the cyan dot represent
The frequency plot of test data recorded at the 6 sites ﬁﬂg test datdf1, f5] and[f1, f2], respectively. When the inter-connector trip

28 September 2012, including a magnified view of the evemrkcurs, some points drag further away from the referenca, daong the
is shown in Fig. 7 (a). As can be observed, the inter-conmecgfincipal component direction; as well as the) direction.

tripped at 02:48:37, and an island occurred immediatelraft
the generation loss and lasted nearly 5 hours. The freque!

501

20 T T

15+ 99.9% confidence limit 99.5% confidence limit 4
~ /

scatter plot for case 1 is depicted in Fig. 7 (b). When theﬂ'nteN P
connector trip events occurs, some data points are drag( =L 1 Y ]
further away from the reference data, in the model space  °f ]

well as in the residual space, i.e. along the direction offthe b0t 024830 05:0000 08:03:20 110000 130000 150000
as well as that of the). 1 A TTH? !
The PCA-based monitoring result for case 1 is illustrated
Fig. 8. As can be seen, the islanding event has been succ 73| :
fully detected by the&) statistic from 02:48:38 to 07:42:01. In
addition, theT™ statistic detected that the frequency variabl

T

00:00:00 02:48:38 05:00:00 07:42:01 11:00:00 13:00:00

violated its control limit at 02:48:39 and 08:03:29, bott Time (hout) 150000
corresponding to generation dip events. A confidence lifhit o
99.9% is employed to avoid excessive false alarms. Fig. 8. PCA monitoring results for case 1.

To check islanding detection accuracy and response time,
Fig. 9 shows the close-up of both the frequency plot and the
PCA monitoring result for the data from 02:48:36 to 02:48:4%enclosed by the cyan elliptical line). Further study réeda
where the inter-connector trip events occurred. It is cteat that the contribution of islanding event t&? was from
the @ statistic detected the islanding event immediately afté2:48:39 and lasted only 3 seconds, while the contribution
it occurred from 02:48:38 without any delay (enclosed bgf non-islanding events t@? was from 02:49:40 and lasted
the red elliptical line). It should be noted that for the firstor about 2 minutes.
500 ms the frequency deviation in thig statistic is caused 2) Return-to-mains Detectiorfig. 10 shows the magnified
by measurement error or transient phenomena due to fheguency plot and PCA monitoring result for data from
inter-connector trip. In practice, a 500 ms islanding diétec 07:40:10 to 07:43:07, in which the islanding site returned t
delay is deliberately introduced, to avoid false triggétds mains. It is clear that thé) statistic detected the re-closure
clear that theT? statistic (upper plot, Fig. 9 (b)) detectedrom 07:42:01 at the 95% confidence limit. It is observed
a frequency deviation from its target (50 Hz) at 02:48:3that from 07:41:04 to 07:42:01 the frequency deviation @f th
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........ for case 1
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T. 1 indicating the islanding site location as the Orkney Isi&nd
9% A BT 3 al 2 »  Which is in the north of the UK. This simple graphical
10 representation would help the system operator identify and
pinpoint the islanding location, or locations immediatafier
s | occurrence. Areas that form part of the same synchronous
__—— .. island could be quickly and accurately determined. In case 1
ek S B based on the fact that, f4, f5 and fs were recorded from 4
% 376 3 o ——e a1 +»— 4 PMUs at the Orkney Islandg;, f, and fs were synchronized

Time (second)

(b) PCA results

with the main grid {; and f;), and f5 was recorded from a
PMU site located at a MV substation, the islanding location

Fig. 9. Close up of: (a) frequency plot; (b) PCA monitoringults of case

1 for data from 02:48:36 to 02:48:43, including islandingl @eneration trip can be narrowed down to a 33 kV substation.

on 28/09/2012.
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plot).
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In addition, Fig. 11 also shows that the contribution of the
fifth variable to theT? statistic is low, indicating that the
frequency of the islanding site hasn't deviated signifigant
from the target frequency (50 Hz) at this time instant.

D. Case 2: Loss of Load, Inter-connector Trip and Islanding
Events on 30/09/2012

The 30 September 2012 saw a high frequency event at 02:28
in the morning, followed by a low frequency event in the
evening at 15:03. The high frequency event was due to loss
of load. The low frequency event was again due to a fault
on the GB-France power import, with a subsequent loss of 1
GW to the GB power system. In the later low frequency event
the frequency fell from 49.97 Hz to 49.6 Hz in 10 seconds
after the inter-connector loss. The rate-of-change ofueagy
at the north of UK was -0.155 Hz/second (calculated over
50 cycles) and again exceeded the current RoCoF setting of
-0.125 Hz/second erroneously triggering islanding prixec
leading to further loss of embedded generation. These high

islanding site (the purple line) from the other sites is 881 and low frequency events (corresponding to loss of load and
0.03 Hz (upper plot in Fig. 10) and the islanding event remaigeneration dip, respectively), are again used to examiae th
in the non-detection zone of the 99.9% confidence limit (lDW%ffectiveneSS of the proposed method. As shown in F|g 12,
plot in Fig. 10). To improve the confidence of return-to-nsainthe () statistic (middle plot) successfully detected the islagdi
detection, the confidence limit was switched to 95%. event at 15:03:30. Further examination revealed this dstan

3) Contribution Plot for Islanding Location Identification event, lasted for about 9 minutes. THé statistic (upper plot)
Fig. 11 shows the variable contributions to the statistic in Fig. 12, however, detected the generation dip event dlso a
(lower plot) and theT? statistics (upper plot) at 02:48:45.15:03:30. This agrees with the frequency scatter plot in Fig
The variable that significantly contributed to thestatistic of 13, where the islanding event is clearly represented by the
the PCA model was identified as the fifth frequency variableed dots which deviate from the reference data along(he



a0 ] [32], [33]. In general, a response time of less than 2

o /L ofload event  Generation dip event seconds can be achieved meeting the IEEE standard [18].
10k | | | If the communication link is down or communication
INTIEONEY N NO A PR NI YD latencies are high, local approaches can be used as back-
20l i up solutions.
S  anding et | 2) Detectability It should be noted that if the frequency
“ in the islanding system is well matched with those of

other sites, our approach will fail to detect islanding
. successfully. More advanced approaches, will be applied

, to other variables, such as voltage phase angle, and used
\ : : ‘ ‘ ‘ \ . as a complementary method.

00:00:00 02:28:03 06:00:00 09:00:00 Tnlrfeo(oh(;?lr) 15:03:30  18:00:00  21:00:00 24:00:00 3) Scalablllty The proposed methodology |S targeted at

presenting a real-time wide area view of system island-
Fig. 12. PCA monitoring results (upper plot for tfi& and middle plot for ing and creating early warnings for system operators.
the @ statistic) and frequency plot (Lower plot) for case 2 on 302012. However, the methodology can also be used as a local or
regional approach, where multiple sites are used to pro-

504 ; ; vide a much more secure reference signal. This includes
, using other nearby distributed generator sites connected
to the same substation and using the same protection
scheme to determine islanding by consensus, perhaps
being able to trip a particular distributed generator that
fails to detect, or avoid a nuisance trip. It should be noted
7 that islanding can also occur in transmission systems.
2 The proposed approach is generic and also useful for
1 this situation.
i 4) Observability.The accuracy of islanding detection and

‘ ‘ location is highly dependent on the topology of the
Fromecy () PMU layout and the prior knowledge of the investigated
network. To ensure full network observability, optimal

Fig. 13. 2-D illustration for the islanding detection. ThHed/cyan/red/yellow PMU placement will be further investigated.
dot represents the reference data/generation dip/isighdad shedding event, .
respectively. The proposed methodolgy was applied to PMU data from

the UK power network, which had an average distributed
generation (DG) penetration of over 11% in 2012 [35]. The

direction, and the generation dip events is representetidy £xamined local network situated in the Orkney Islands often
cyan dots which violate the reference data along, and orfijiPorts power, reflecting 100% distributed renewable gnerg
along, the principle component i.e. ti& direction. penetration in this area [36]. The case studies presented

It should be noted that another frequency deviation eveffgmonstrate that the proposed methodology is a promising ap
was detected by th&? statistic at 02:28:03 for 1.5 minutes,Proach to islanding detection. The scalability of the appfo

which corresponds to the loss of load event in Fig. 13. Thigakes it an attractive proposition for networks with higinge

further demonstrated that the proposed PCA method was alffion of DG, where there is an increased risk of uncorgrbll
to detect islanding events accurately, but also able togmtevislanding operation. In addition, its dependence on freqye
false triggering caused by the generation dip and loss af lokgther than voltage magnitude makes it insensitive to local

events, where the frequencies do not deviate from each. ot¥&{tage problems that can be an issue [37] with DG. Overall,
the relative simplicity and statistical basis of the appioa

make it a powerful tool for real time situation awarenesg tha
ould aid system operators in preventing large scale blasko
hould islanding situations occur.
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IV. DISCUSSION

As illustrated in the flow chart in Fig. 3, the propose
PCA based islanding detection method, involves off-lineAPC
modelling and on-line monitoring. The implementation o th
proposed method requires consideration of a number ofsssue V. CONCLUSION

1) Response timeThe detection time for the proposed This paper presents a multivariate statistical methodolog

method will have a time delay, calculated &5 = for analysing wide area synchronized frequency measuresmen
Tear+Tp+Teom, WhereT,,; is the computation time of for islanding detection. Using principal component anislyis

the proposed algorithm and in most cases is negligibis, shown that th&) statistic is able to discriminate islanding
Tp is the introduced time delay of 500 ms, to avoietvents from other grid disturbances, such as inter-connect
false triggering by measurement error etc., ahd,, trip, generation dip/trip and loss of load events. The athges

is the latency of two-way communication, which isof the proposed approach when compared with the conven-
normally between 20 and 200 ms depending on desigional RoCoF technique and the newly proposed frequency



difference method [17] are: (1) the threshold for islandings3]
detection can be automatically determined based on lamg-te
historic data; (2) it is simple to implement, computatidyal [14]
fast with straightforward visualization; (3) it can be used
detect islanding system re-closure; (4) associated duriton (1]
plots can identify the islanded site, sites and regions;ir{5)
addition, theT? statistic is able to detect frequency deviation
events, such as loss of load and generation trip. (16]

The limitation of this approach is that if the frequency
in the islanding system is well matched with those of oth&r7]
sites, it will fail to detect islanding successfully. In atiloh,
incomplete data and outliers are also challenging problems
for its practical use. More advanced approaches, such [&3
non-Gaussian, probabilistic, and recursive approachidwi
investigated and applied to other variables in our futurekwo
aiming to improve detectability robustness.
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