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Abstract—This paper presents a new technique for the de-
tection of islanding conditions in electrical power systems.
This problem is especially prevalent in systems with significant
penetrations of distributed renewable generation. The proposed
technique is based on the application of principal component
analysis (PCA) to data sets of wide-area frequency measurements,
recorded by phasor measurement units. The PCA approach
was able to detect islanding accurately and quickly when com-
pared with conventional RoCoF techniques, as well as with the
frequency difference and change of angle difference methods
recently proposed in the literature. The reliability and accuracy
of the proposed PCA approach is demonstrated using a number
of test cases, which consider both islanding and non-islanding
events. The test cases are based on real data, recorded from
several phasor measurement units located in the UK power
system.

Index Terms—Wide area monitoring, islanding detection, re-
closure, multivariate statistics, synchronized phasor measure-
ments

I. I NTRODUCTION

GENERATION from renewable energy sources is a key
component in the worldwide strategy to reduce carbon

emissions and to maintain a secure and sustainable energy
supply. In Northern Ireland, for example, a target has been
set to achieve as high as 40% of its electricity consumption
from renewable sources by 2020 [1]. A similar target has also
been set by the Republic of Ireland and several other European
countries, while the U.S. and China both set a target of around
20% [2]. The integration of significant quantities of distributed
renewable generation into the electricity grid, however, has
raised serious concerns about its potential impacts on the safe
operation and stability of the grid. In this context the issue of
islanding detection in the distribution power system presents
great challenges, and it is going through a period of renewed
interest in both industry and academia.

Islanding is a phenomenon where distributed generators
(e.g. photovoltaic, wind turbines) continue operating anden-
ergizing the local loads even though they are isolated from the
rest of the utility source [3], [4]. This islanding condition is
particularly dangerous; if not detected it may endanger main-
tenance personnel. In addition, unsynchronized reconnection
of an island to the main power grid may cause severe damage
to the utility, the distributed generators and other customer
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equipment. Therefore, it is important to be able to detect
islanding conditions accurately and quickly.

To achieve this, various islanding-detection techniques have
been proposed [4], [5], [6]. A detailed review of these tech-
niques has been carried out in [7]. The techniques may be de-
scribed as local or remote (communication-based) approaches.

Local approaches, can be classified into passive and ac-
tive methods. Passive methods based on rate-of-change of
frequency (RoCoF) [3], rate of change of power [8], rate
of change of frequency over power [9], vector shift [3], and
harmonic impedance estimation techniques [10] have attracted
wide spread attention. The most popular RoCoF relay, how-
ever, might become unsuccessful if the power imbalance in the
islanded system is less than 15% [5]. Moreover, in systems
with a high penetration of renewable generation there is an
increased risk of false detection during load or generation
trip events. Active methods perform islanding detection by
injecting a disturbing signal to break the power balance [11].
For example, in the active frequency drift method, a forced
change of frequency approach, the frequency of the voltage is
forced to drift up or down in the island [12]. Such approaches
has become mandatory for islanding prevention with solar PV
in some countries. Active methods tend to have a smaller non-
detection zone compared to passive methods, but have the
disadvantage of often degrading power quality to a certain
degree.

Classification-based passive techniques, based on fuzzy-
rules [5], wavelet-transforms [4], probabilistic neural networks
[13], support vector machines [13], Bayesian methods [6],
and decision trees [14], [15], have been recently proposed
for islanding detection in the literature. Unfortunately,inves-
tigations of these approaches have been limited to studies on
simulated power systems, due to their critical demand for large
volumes of historic event data. Moreover, the response timefor
islanding detection based on these approaches is not discussed
in most studies.

Remote techniques, such as power line signalling and trans-
fer trip schemes, usually rely on communication signals foris-
landing detection. Some new remote or communication-based
techniques, especially PMU-based, have attracted great atten-
tion in both industry and academia in recent years. Moreover,
deployment cost of these techniques is gradually redeemed
by their technical good performance [16]. However, remote
techniques utilized to date often focus on the distributed
generator side, and in general cannot provide a real-time wide-
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area view of the islanding situation, or produce alarming for
system operators [17]. This is particularly important in systems
with high penetrations of renewable generation, which can
become vulnerable to nuisance tripping of islanding protection.
To address this problem, reference [17] has recently proposed
a PMU-based method, using a frequency difference and the
change of angle difference approach. Despite the reported
success of this method in several real cases, a number of
outstanding problems still remain:

1) It requires a number of parameters to be determined
and optimized to define the tripping time criteria for
islanding detection. These parameters include thresholds
for the frequency and the angle deviations and three
settings for the timer. These were originally set based
on experience by the authors.

2) Its response time for islanding detection is over 3
seconds, which exceeds the IEEE standard 1547-2003
[18] where the anti-islanding relay must immediately
disconnect the distributed generator within 2 seconds
of the formation of an island. The requirement for a
response time of under 2 seconds is also defined in the
IEC 61727 standard for PV systems [19].

3) Some issues may arise with the proposed islanding
detection approach owing to its critical dependence on
the reference frequency and reference phase angle.

This paper attempts to address these problems using an
intelligent multivariate statistical approach, relying on prin-
cipal component analysis (PCA) of the measurements from
PMUs. This is a challenging proposition because (i) the
observed phasor measurements are influenced by random load
fluctuations that continuously perturb the system equilibrium
slightly and in a non-stationary manner [20]; (ii) other power
system events such as generator trips, line trips, and loss of
load also create perturbations in the voltage, frequency, and
angles similar to those generated by islanding events; (iii)
the signal-to-noise ratio of PMU data is often low, making
detection of islanding difficult.

Because of its simplicity, PCA, a data-driven multivariate
projection-based technique, has gained great attention for
monitoring complex processes, such as those found in the
chemical industry [21]. PCA exploits the correlation within
the typically large number of recorded variables by defininga
reduced set of score variables that construct a Hotelling’sT 2

statistic [21]. The mismatch between the recorded variables
and their reconstruction using these score variables leadsto
the definition of the Q statistic [22]. The PCA method enables
analysis of many sets of measurements simultaneously and
facilitates the derivation of information to determine if the
observed system is in an abnormal condition, with a level of
confidence.

Similar to [17], the proposed islanding detection method
is based on wide area phasor measurements, and is able to
present a real-time wide-area view of islanding, and creates
early warnings for system operators and engineers to maintain
system security. This is motivated by the fact that one of
the key findings of the August 2003 blackout in the U.S.
and Canada was the lack of operator awareness during the

time leading up to the blackout [23]. The more recent July
2012 Indian blackouts [24] further indicate the urgent needfor
the development of intelligent data analytical tools for wide
area monitoring ofsynchronizedPMU data to enhance real
time situation awareness. In contrast to [17], in this study, an
intelligent statistical approach based on PCA is introduced that
enables the thresholds for event detection to be automatically
determined based on long-term historic data. Moreover, theap-
proach is simple to implement, computationally fast, provides
a straightforward visualization; and has a simple geometrical
interpretation. In addition, it can be used to detect when an
islanded system is reconnected back to the transmission grid,
and the contribution plots associated with PCA statistics can
be used to identify the frequency variable which is affected
by an islanding condition.

It is noted that similar work has been reported previously in
[25], which attempted to apply PCA on PMU data including
measurements of frequency, phase angle and voltage magni-
tude, but failed to perform islanding detection effectively. The
previous method not only produced too many false alarms, but
also the geometrical interpretation of islanding detection was
lost. This is mainly caused by the underlying assumption of
PCA, where the applied data should be linear and Gaussian
distributed; however, both phase angle and voltage magnitude
variables exhibit significant non-Gaussian characteristics for
long-term historic data. Thus, in this paper, only frequency
variables measured from different locations, which approx-
imately follow a normal distribution, are considered. The
proposed method has been able to correctly identify islanding
events on the UK power system, as would be evident through
visual inspection. To the best of our knowledge, this is the
first research work that presents: (i) the successful application
of the PCA method to real PMU data for islanding detection;
(ii) an approach for geometrically interpreting islandingevents
and distinguishing them from other non-islanding events.

The paper is organized as follows. The relevant PCA-based
statistical monitoring theory and related investigationsfor the
wide area frequency measurements are presented next. Section
III describes the real historic frequency data obtained from
multiple locations on the UK power system for study, and gives
results for the PCA applications. Discussion and conclusions
are presented in Section IV and V, respectively.

II. PRINCIPAL COMPONENT ANALYSIS BASED ISLANDING

DETECTION

A. Principal Component Analysis of Wide Area Frequency
Measurements

Principal component analysis, first proposed in 1901 [26],
is one of the most popular multivariate dimension reduction
techniques. It transforms a set of original correlated variables
into a smaller set of uncorrelated ones [27]. These transformed
variables are known as principal components, which are de-
rived in the order of reducing variability with the first principal
component accounting for the most significant variability in
the original data [22]. The transformation can be viewed as an
orthogonal rotation of the data such that maximum variationis
projected onto the new axes, which are defined by the original
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TABLE I
CALCULATION OF CONFIDENCE LIMITS FOR MONITORING STATISTICS

Statistic Confidence Limit

T 2 = t
TΛ−1

t
r(N2

−1)
N(N−r)

Fr,N−r

Q = e
T
e g · χ2 (h)

variables. The correlations between the new variables willbe
removed after the rotation.

PCA identifies the orthogonal directions of maximum vari-
ance in the original data, by performing eigenvector/eigenvalue
analysis of the sample covariance matrix. A more detailed
description of PCA can be found in [22]. Liuet al.have previ-
ously applied PCA in statistical monitoring of a nuclear power
plant waste management process for fault detection [28], and
in wind farm oscillation monitoring [29]. This section gives a
brief description of principal component analysis of frequency
measurements for islanding detection.

Let f ∈ R
m denote a sample vector storingm frequency

variables. Assuming that there areN samples for each vari-
able, a data matrixF ∈ R

N×m is composed with each row
representing a sample. After scaling so that each column has
zero-mean and unit variance,F can be decomposed into a
score matrixT ∈ R

N×r and a loading matrixU ∈ R
m×r

(r ≤ m is the number of retained principal components) [22]:

F = TU
T +E (1)

whereE is the residual matrix. A scaled sample vectorf can
be projected on the model subspace, which is spanned byU,
and the residual subspace, respectively [22].

The geometric simplicity of the PCA decomposition allows
the construction of two univariate statistics, a Hotelling’s T 2

statistic that represents significant variation of the recorded
data and is associated with the PCA model plane and a
Q statistic that describes the mismatch between the original
variables and their projections onto the model plane, i.e. the
variation of the data within the residual subspace. These two
statistics, are defined as follows:

T 2
= f

T
UΛ

−1
U

T
f = t

T
Λ

−1
t (2)

and

Q = e
T
e = f

T
[

I−UU
T
]

f (3)

whereΛ is a diagonal matrix consisting ofr eigenvalues of
covariance matrixS of scaledF. t = U

T
f is a score vector,

e ∈ R
m is a residual vector andI represents an identity matrix.

Under the assumption that the recorded variables are linear
and normally distributed, theT 2 follows an F -distribution
[22] and theQ statistic can be approximated by a centralχ2-
distribution [21]. As discussed in [22], the confidence limits
can be obtained as presented in Table I, whereg = ρ2/2µ,
h = 2µ2/ρ2 andµ andρ2 are the sample mean and variance
of theQ statistic.

For on-line wide area power system monitoring, a statisti-
cally significant number of violations of these limits, or atleast
one of them, is then indicative of abnormal system behavior.

B. A Geometric View of PCA-Based Islanding Detection

The theoretical basis of a geometric view of the PCA model
is well explained in [21], [30]. Definingz = Λ

−1/2
t and

noting thatt = U
T
f , the Hotelling statistic,T 2 = z

T
z, can be

viewed as a scaled squared 2-norm (or weighted distance) of
an original frequency sample vector from its mean [21]. More
specifically, theT 2 can be used to monitor system deviations
from a target. When the weighted distance, represented by the
T 2 statistic, is less than a confidence control limit, the system
is considered to be on target.

For an original data set adequately explained by two
principal components, the PCA model can be geometrically
interpreted in 3 dimensions [30]. If the original data follow
a multivariate normal distribution and represent the normal
operating conditions, the data scatter can be enclosed in an
ellipse whose axes are the principal component loadings [30].
The elliptical envelope is provided by the statistical confidence
limit of the T 2 statistic, presented in Table I. If the system
variables are highly correlated, the elliptical envelope becomes
more elongated [21]. In addition, a third dimension is used to
explain the deviation from the model plane, represented by the
Q statistic [30].

When T 2 and Q statistics are utilized along with their
respective confidence limits, it produces a cylindrical in-
control region in 3-Dimensional (3-D) space for 3 variables
explained by two principal components, as illustrated in Fig.
1. In the figure, the ‘×’s represent data collected during in-
control operation, while the ‘◦’s and ‘+’s show data that violate
theT 2 andQ statistic, respectively [21], [30].

Furthermore, theT 2 statistic in Eq. (2) represents the
weighted distance (Mahalanobis distance) of any point from
the target (e.g. 50 Hz for frequency variables in the UK power
system). All points projected on the ellipse in thet1 − t2
plane in Fig. 1 would have the same value ofT 2 statistic.
Hence, aT 2 statistic chart would detect as a special event any
point projected outside of the ellipse. In contrast toT 2, the
Q statistic does not directly measure the variations along each
eigenvector but measures the total sum of variations in the
residual space. In another words, theQ statistic, also known
as the squared prediction error, measures the deviation of the
observations that was not captured by the PCA model. Using
these two statistics together has been found to be effectiveat
distinguishing between different types of faults in chemical
process applications [21]. Here, a similar strategy is usedin
the power system context, to geometrically interpret islanding
events (where the frequency variables deviate significantly
from each other) and distinguish them from non-islanding
events (where the frequency variables deviate from the target
but do not deviate significantly from each other).

For the special case of monitored frequency variables
recorded from different sites, a single principal component is
sufficient to capture observed variability due to the high degree
of correlation between variables. A geometric interpretation
for islanding detection using theT 2 and theQ statistics of
the PCA method can then be obtained in 2-Dimensional space
(2-D) as demonstrated in Fig. 2. If the distance from the
origin along the principal component line to the projected
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Fig. 1. A geometric interpretation for event detection using theT 2 and the
Q statistics of PCA in 3-D.t1 andt2 are the first and the second principal
components, respectively [21].

Fig. 2. A geometric interpretation for islanding detectionusing theT 2 and
theQ statistics of the PCA method in 2-D.

data point is larger than the scaled maximum eigenvalue in
the matrixΛ, it will be detected by theT 2 statistic indicating
that the frequency variables have significantly deviated from
the target (50 Hz), i.e. a load and generation mismatch event
has occurred. If the total sum of variations in the residual
space violates the confidence value, it will be detected by the
Q statistic indicating the frequency variables have deviated
significantly from each other, i.e. an islanding event has
occurred. This holds true due to the simple fact that the
frequency variable is a universal parameter for the entire power
grid. Essentially, as long as the data points are aligned with the
first principal component direction (y ≈ x, and the frequency
variables are almost equal to each other) with a certain
confidence limit, there is no significant deviation between the
frequency variables. Otherwise, if data points are not aligned
with the first principal component direction (y 6= x), then it
indicates significant inter-frequency deviations (an islanding
event occurs). This will be further demonstrated in the case
studies presented later. Thus, in Fig. 2, the data points repre-
sented by ‘◦’ can only be detected byT 2, indicating global

load and generation mismatch events where the frequency
variables do not deviate significantly from each other. The
data points represented by ‘+’ can only be detected byQ and
indicate islanding events where the frequency variables remain
close to the target. Finally, the data points ‘⊕’ not only violate
limits in the model space but also in the residual space (i.e.
they are detected by bothT 2 andQ), and hence they indicate
islanding events where the frequency variables have deviated
significantly from each other and from the 50 Hz target.

C. Contribution Plots of Monitored Frequency Variables to
PCA Statistics

Contribution plots identify the contribution of individual
frequency variables to the PCA statistics. If the contribution
of a particular frequency variable towards theQ statistic is
large, an islanding site can be identified. The contributionof
the ith frequency variable to theQ statistic can be obtained
as follows:

QCONT = Φ
T
i f (4)

where Φ
T
i is the ith row of the matrix I − UU

T . The
variable contribution to theT 2 statistic, defined in [31], can be
used to determine if the monitored frequency variable deviates
significantly from its target.

In summary, the implementation of the proposed PCA-
based islanding detection method involves two steps: 1) off-
line PCA modelling using historic data to obtain the principal
components and control limits; and 2) on-line monitoring to
determine if an islanding event occurs. Further details of the
proposed islanding detection strategy are provided in Fig.3.

III. UK P OWER SYSTEM CASE STUDY

A. UK Power System Wide Area Phasor Data

In the UK power grid, a type of single-phase phasor
measurement unit, developed at Queen’s University Belfast
(QUB) as part of the OpenPMU project [32], [33] is installed
at sites of interest for islanding detection, including embed-
ded generation (at 415 V) and main distribution substations
(33 kV). The PMUs report at 10 Hz and measurements of
frequency, voltage magnitude, and voltage phase angle are sent
via the Internet to a server at QUB for analysis. The locations
of the units are highlighted in Fig. 4. The units used in this
study are supported by Scottish and Southern Energy Ltd.

From the UK power system, 7 days of recorded historic
data from 6 sites was used as reference data to determine the
relevant normal operational statistics. The data set consisted
of a total of 5,446,101 synchronous multivariate samples
(with 601,899 samples missing). The histogram plot of the
frequency, phase angle difference and voltage magnitude along
with its corresponding normal distribution curve and kernel
density estimate, is shown in Fig. 5. It is clear that the
frequency variable approximately follows a normal distribu-
tion, while the others demonstrate significant non-Gaussian
characteristics. Due to the limited space, only the frequency
variable is analyzed here. More advanced approaches will be
applied to phase angle difference and voltage data in our future
work, to address the non-Gaussian related issues.
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Fig. 3. Flow chart of the proposed PCA method for islanding detection.

TABLE II
VARIANCE CONTRIBUTION OF PRINCIPAL COMPONENTS(PCS)

#PC(s) Percent Variance Captured by PCA Model
Eigenvalue of Cov(F) Variance Captured%

1 5.969 99.48
2 0.011 0.18
3 0.007 0.12
4 0.006 0.11
5 0.006 0.09
6 0.001 0.02

B. PCA Modelling

The reference data set of the frequency variables from 6
sites (f1 - Southern England,f2 - Manchester,f3, f4, f5, f6 -
Orkney Islands) were used to produce a covariance matrix. The
eigenvalues of the covariance matrix and the contribution of
each principal component to the reconstruction of the original
data are summarized in Table II.

As expected, the first principal component corresponding to
the largest eigenvalue, captures 99.48% of the total variance,
and as such represents the significant system variation and
the interrelationships between the six frequency variables

5

5 Orkney Island

Southern England

1 Manchester

2

Tealing & 

Dundee

Dublin 1

2
Belfast

1

1

Donegal

Fermanagh

2 Shetland Island

Fig. 4. OpenPMU Layout in the UK System, revised from [32]. The numbers
in the circles are the number of PMUs installed at the associated locations.

Fig. 5. Histogram plot of frequency, phase angle difference, and voltage
magnitude, along with its corresponding normal distribution curve, and kernel
density estimate.

collected from different locations in the power grid, whilst the
remaining five components capture the noise variance [21].
This agrees with the scatter plot of the frequency variables
of the reference data set, shown in Fig. 6. Thus only the first
principal component is used to construct the PCA model. In
addition, for the 5,446,101 synchronous multivariate reference
data, the Type I error, or the false alarm rate, from theT 2 and
Q statistics of the PCA model for a confidence of 99.9% are
0.14% and 0.13%, respectively. This implies that the Type I
errors for theT 2 and theQ statistics are close to the expected
0.1%.

In the following, two real case studies including one with
both inter-connector trip and islanding events, and the other
with loss of load, inter-connector trip and islanding events, are
presented to verify the proposed PCA method for islanding
detection.
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Fig. 6. Frequency scatter plot of frequency 1 (f1) and frequency 2 (f2).

C. Case 1: Inter-connector Trip and Islanding Events on
28/09/2012

1) Islanding Detection:On 28 September 2012 a inter-
connector trip event occurred between Great Britain (GB) and
France, which resulted in an instantaneous loss of 1 GW
being imported to the GB power grid. In the 10 seconds
after the loss, the frequency of the main power system fell
from 50.08 Hz to 49.70 Hz. The resulting rate-of-change of
frequency -0.186 Hz/second (calculated over 50 cycles) at the
north of the UK exceeded the current RoCoF setting of -
0.125 Hz/second recommended by the UK Grid Code G59/2
[34], which falsely triggered an islanding operation on the
PMU site, located at a MV substation and lead to the further
loss of embedded generation.

The frequency plot of test data recorded at the 6 sites for
28 September 2012, including a magnified view of the event,
is shown in Fig. 7 (a). As can be observed, the inter-connector
tripped at 02:48:37, and an island occurred immediately after
the generation loss and lasted nearly 5 hours. The frequency
scatter plot for case 1 is depicted in Fig. 7 (b). When the inter-
connector trip events occurs, some data points are dragged
further away from the reference data, in the model space as
well as in the residual space, i.e. along the direction of theT 2

as well as that of theQ.
The PCA-based monitoring result for case 1 is illustrated in

Fig. 8. As can be seen, the islanding event has been success-
fully detected by theQ statistic from 02:48:38 to 07:42:01. In
addition, theT 2 statistic detected that the frequency variable
violated its control limit at 02:48:39 and 08:03:29, both
corresponding to generation dip events. A confidence limit of
99.9% is employed to avoid excessive false alarms.

To check islanding detection accuracy and response time,
Fig. 9 shows the close-up of both the frequency plot and the
PCA monitoring result for the data from 02:48:36 to 02:48:43,
where the inter-connector trip events occurred. It is clearthat
the Q statistic detected the islanding event immediately after
it occurred from 02:48:38 without any delay (enclosed by
the red elliptical line). It should be noted that for the first
500 ms the frequency deviation in theQ statistic is caused
by measurement error or transient phenomena due to the
inter-connector trip. In practice, a 500 ms islanding detection
delay is deliberately introduced, to avoid false triggers.It is
clear that theT 2 statistic (upper plot, Fig. 9 (b)) detected
a frequency deviation from its target (50 Hz) at 02:48:39
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(b) PCA results

Fig. 7. Case 1 on 28/09/2012. (a) Frequency plot (upper plot); Close up of
frequency plot (lower plot) (b) A 2-D illustration of the test data. The blue dot
represents the reference data[f1, f2], the red dot and the cyan dot represent
the test data[f̃1, f̃5] and [f̃1, f̃2], respectively. When the inter-connector trip
occurs, some points drag further away from the reference data, along the
principal component directiont1 as well as theQ direction.

Fig. 8. PCA monitoring results for case 1.

(enclosed by the cyan elliptical line). Further study revealed
that the contribution of islanding event toT 2 was from
02:48:39 and lasted only 3 seconds, while the contribution
of non-islanding events toT 2 was from 02:49:40 and lasted
for about 2 minutes.

2) Return-to-mains Detection:Fig. 10 shows the magnified
frequency plot and PCA monitoring result for data from
07:40:10 to 07:43:07, in which the islanding site returned to
mains. It is clear that theQ statistic detected the re-closure
from 07:42:01 at the 95% confidence limit. It is observed
that from 07:41:04 to 07:42:01 the frequency deviation of the
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Fig. 9. Close up of: (a) frequency plot; (b) PCA monitoring results of case
1 for data from 02:48:36 to 02:48:43, including islanding and generation trip
on 28/09/2012.
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Fig. 10. Close up on frequency plot of re-closure for case 1 on28/09/2012, for
data from 07:40:10 to 07:43:07 (upper plot); PCA monitoringresults (lower
plot).

islanding site (the purple line) from the other sites is lessthan
0.03 Hz (upper plot in Fig. 10) and the islanding event remains
in the non-detection zone of the 99.9% confidence limit (lower
plot in Fig. 10). To improve the confidence of return-to-mains
detection, the confidence limit was switched to 95%.

3) Contribution Plot for Islanding Location Identification:
Fig. 11 shows the variable contributions to theQ statistic
(lower plot) and theT 2 statistics (upper plot) at 02:48:45.
The variable that significantly contributed to theQ statistic of
the PCA model was identified as the fifth frequency variable,

Fig. 11. Contribution plot toT 2 (upper plot) andQ statistics (lower plot)
for case 1

indicating the islanding site location as the Orkney Islands,
which is in the north of the UK. This simple graphical
representation would help the system operator identify and
pinpoint the islanding location, or locations immediatelyafter
occurrence. Areas that form part of the same synchronous
island could be quickly and accurately determined. In case 1,
based on the fact thatf3, f4, f5 andf6 were recorded from 4
PMUs at the Orkney Islands,f3, f4 andf6 were synchronized
with the main grid (f1 andf2), andf5 was recorded from a
PMU site located at a MV substation, the islanding location
can be narrowed down to a 33 kV substation.

In addition, Fig. 11 also shows that the contribution of the
fifth variable to theT 2 statistic is low, indicating that the
frequency of the islanding site hasn’t deviated significantly
from the target frequency (50 Hz) at this time instant.

D. Case 2: Loss of Load, Inter-connector Trip and Islanding
Events on 30/09/2012

The 30 September 2012 saw a high frequency event at 02:28
in the morning, followed by a low frequency event in the
evening at 15:03. The high frequency event was due to loss
of load. The low frequency event was again due to a fault
on the GB-France power import, with a subsequent loss of 1
GW to the GB power system. In the later low frequency event
the frequency fell from 49.97 Hz to 49.6 Hz in 10 seconds
after the inter-connector loss. The rate-of-change of frequency
at the north of UK was -0.155 Hz/second (calculated over
50 cycles) and again exceeded the current RoCoF setting of
-0.125 Hz/second erroneously triggering islanding protection
leading to further loss of embedded generation. These high
and low frequency events (corresponding to loss of load and
generation dip, respectively), are again used to examine the
effectiveness of the proposed method. As shown in Fig. 12,
theQ statistic (middle plot) successfully detected the islanding
event at 15:03:30. Further examination revealed this islanding
event, lasted for about 9 minutes. TheT 2 statistic (upper plot)
in Fig. 12, however, detected the generation dip event also at
15:03:30. This agrees with the frequency scatter plot in Fig.
13, where the islanding event is clearly represented by the
red dots which deviate from the reference data along theQ
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Fig. 12. PCA monitoring results (upper plot for theT 2 and middle plot for
theQ statistic) and frequency plot (Lower plot) for case 2 on 30/09/2012.

Fig. 13. 2-D illustration for the islanding detection. The blue/cyan/red/yellow
dot represents the reference data/generation dip/islanding/load shedding event,
respectively.

direction, and the generation dip events is represented by the
cyan dots which violate the reference data along, and only
along, the principle component i.e. theT 2 direction.

It should be noted that another frequency deviation event
was detected by theT 2 statistic at 02:28:03 for 1.5 minutes,
which corresponds to the loss of load event in Fig. 13. This
further demonstrated that the proposed PCA method was able
to detect islanding events accurately, but also able to prevent
false triggering caused by the generation dip and loss of load
events, where the frequencies do not deviate from each other.

IV. D ISCUSSION

As illustrated in the flow chart in Fig. 3, the proposed
PCA based islanding detection method, involves off-line PCA
modelling and on-line monitoring. The implementation of the
proposed method requires consideration of a number of issues:

1) Response time. The detection time for the proposed
method will have a time delay, calculated asT =

Tcal+TD+Tcom, whereTcal is the computation time of
the proposed algorithm and in most cases is negligible,
TD is the introduced time delay of 500 ms, to avoid
false triggering by measurement error etc., andTcom

is the latency of two-way communication, which is
normally between 20 and 200 ms depending on design

[32], [33]. In general, a response time of less than 2
seconds can be achieved meeting the IEEE standard [18].
If the communication link is down or communication
latencies are high, local approaches can be used as back-
up solutions.

2) Detectability. It should be noted that if the frequency
in the islanding system is well matched with those of
other sites, our approach will fail to detect islanding
successfully. More advanced approaches, will be applied
to other variables, such as voltage phase angle, and used
as a complementary method.

3) Scalability. The proposed methodology is targeted at
presenting a real-time wide area view of system island-
ing and creating early warnings for system operators.
However, the methodology can also be used as a local or
regional approach, where multiple sites are used to pro-
vide a much more secure reference signal. This includes
using other nearby distributed generator sites connected
to the same substation and using the same protection
scheme to determine islanding by consensus, perhaps
being able to trip a particular distributed generator that
fails to detect, or avoid a nuisance trip. It should be noted
that islanding can also occur in transmission systems.
The proposed approach is generic and also useful for
this situation.

4) Observability.The accuracy of islanding detection and
location is highly dependent on the topology of the
PMU layout and the prior knowledge of the investigated
network. To ensure full network observability, optimal
PMU placement will be further investigated.

The proposed methodolgy was applied to PMU data from
the UK power network, which had an average distributed
generation (DG) penetration of over 11% in 2012 [35]. The
examined local network situated in the Orkney Islands often
exports power, reflecting 100% distributed renewable energy
penetration in this area [36]. The case studies presented
demonstrate that the proposed methodology is a promising ap-
proach to islanding detection. The scalability of the approach
makes it an attractive proposition for networks with high pene-
tration of DG, where there is an increased risk of uncontrolled
islanding operation. In addition, its dependence on frequency
rather than voltage magnitude makes it insensitive to local
voltage problems that can be an issue [37] with DG. Overall,
the relative simplicity and statistical basis of the approach
make it a powerful tool for real time situation awareness that
could aid system operators in preventing large scale blackouts
should islanding situations occur.

V. CONCLUSION

This paper presents a multivariate statistical methodology
for analysing wide area synchronized frequency measurements
for islanding detection. Using principal component analysis, it
is shown that theQ statistic is able to discriminate islanding
events from other grid disturbances, such as inter-connector
trip, generation dip/trip and loss of load events. The advantages
of the proposed approach when compared with the conven-
tional RoCoF technique and the newly proposed frequency



9

difference method [17] are: (1) the threshold for islanding
detection can be automatically determined based on long-term
historic data; (2) it is simple to implement, computationally
fast with straightforward visualization; (3) it can be usedto
detect islanding system re-closure; (4) associated contribution
plots can identify the islanded site, sites and regions; (5)in
addition, theT 2 statistic is able to detect frequency deviation
events, such as loss of load and generation trip.

The limitation of this approach is that if the frequency
in the islanding system is well matched with those of other
sites, it will fail to detect islanding successfully. In addition,
incomplete data and outliers are also challenging problems
for its practical use. More advanced approaches, such as
non-Gaussian, probabilistic, and recursive approaches will be
investigated and applied to other variables in our future work
aiming to improve detectability robustness.
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