54 research outputs found

    Partial cloning and characterization of an arginine decarboxylase in the kidney

    Get PDF
    Partial cloning and characterization of an arginine decarboxylase in the kidney. Using homology-based polymerase chain reaction (PCR) amplification, we demonstrate the presence of arginine decarboxylase mRNA in tissues involved in arginine metabolism (brain, kidney, gut, adrenal gland, and liver of the rat) but not in organs (lung, heart, and spleen) in which arginine metabolism is low or absent. The polymerase chain reaction product from the kidney had a nucleotide sequence 61% identical to that of the E. coli biosynthetic arginine decarboxylase. On a whole tissue basis, kidney homogenates were three times more active than brain homogenates at decarboxylating [1-14C]arginine. Subcellular fractionation localized the arginine decarboxylase activity of the kidney to the mitochondria fraction. Agmatine, one of the products of arginine decarboxylation, was found to inhibit nitric oxide formation by post-mitochon-drial supernatants of the brain or kidney. We propose that arginine is metabolized to two structurally different signaling molecules, nitric oxide and agmatine. Furthermore, agmatine can influence the nitric oxide synthase pathway

    Biochemical network analysis of protein-protein interactions to follow-up T1 bladder cancer patients

    Get PDF
    PM003/2016). LBC, JLC, CL, RB, and HMS acknowledge the funding provided by the Associate Laboratory for Green Chemistry LAQV which is financed by national funds from FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior, through the projects UIDB/50006/2020 and UIDP/50006/2020. HMS acknowledges the Associate Laboratory for Green Chemistry-LAQV (LA/P/0008/2020) funded by FCT/MCTES for his research contract. LBC thanks the FCT/MCTES for his Ph.D. grant (SFRH/BD/144222/2019). The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE [30] partner repository with the data set number PXD026784. Publisher Copyright: © 2023 The AuthorsBladder cancer (BCa) is a prevalent disease with a high risk of aggressive recurrence in T1-stage patients. Despite the efforts to anticipate recurrence, a reliable method has yet to be developed. In this work, we employed high-resolution mass spectrometry to compare the urinary proteome of T1-stage BCa patients with recurring versus non-recurring disease to uncover actionable clinical information predicting recurrence. All patients were diagnosed with T1-stage bladder cancer between the ages of 51 and 91, and urine samples were collected before medical intervention. Our results suggest that the urinary myeloperoxidase to cubilin ratio could be used as a new tool for predicting recurrence and that dysregulation of the inflammatory and immune systems may be a key driver of disease worsening. Furthermore, we identified neutrophil degranulation and neutrophil extracellular traps (NETs) as key pathways in the progression of T1-stage BCa. We propose that proteomics follow-up of the inflammatory and immune systems may be useful for monitoring the effectiveness of therapy. Significance: This article describes how proteomics can be used to characterize tumor aggressiveness in patients with the same diagnosis of bladder cancer (BCa). LC-MS/MS in combination with label free quantification (LFQ) were used to explore potential protein and pathway level changes related to the aggressiveness of the disease in 13 and 17 recurring and non-recurring T1 stage BCa patients. We have shown that the MPO/CUBN protein ratio is a candidate for a urine prognosis tool in BCa. Furthermore, we identify dysregulation of inflammation process as a driver for BCa recurrence and progression. Moreover, we propose using proteomics to track the effectiveness of therapy in the inflammatory and immune systems.publishersversionpublishe

    External Ocular Surface Bacterial Isolates and their Antimicrobial Susceptibility Patterns among Pre-operative Cataract Patients at Mulago National Hospital in Kampala, Uganda.

    Get PDF
    Endophthalmitis is a severe complication of cataract surgery which leads to high ocular morbidity and visual loss even with antibiotic treatment. Bacterial ocular floras are the implicated causative agents. This study was undertaken to evaluate the external ocular surface bacterial isolates and their antimicrobial susceptibility patterns among pre-operative cataract patients at Mulago National Hospital. This cross sectional study enrolled consecutively 131 patients scheduled for routine cataract surgery in the Department of Ophthalmology at Mulago National Hospital in Kampala, Uganda. Eyelid margin and conjunctival swabs were collected and processed using standard microbiological procedures to identify bacterial isolates and their respective antimicrobial susceptibility patterns. Of 131 patients involved (mean age 63.3 ± 14.5 years), 54.2% (71/131) were females. The eyelid margin and conjunctival samples were culture positive in 59.5% (78/138) and 45.8% (60/138) respectively. The most common organisms identified were Coagulase-negative Staphylococci (CoNS) [65.9% (91/138)] and Staphylococcus aureus [21.0% (29/138)]. CoNS showed the highest resistance to tetracycline (58.2%, 53/91) and erythromycin (38.5%, 35/91), whereas in S. aureus the resistance to tetracycline and erythromycin were 55.2% (16/29) and 31.0% (9/29) respectively. Methicillin resistant CoNS (MRS) and Methicillin resistance S. aureus (MRSA) were 31.9% (29/91) and 27.6% (8/29) respectively. There were low resistance rates for CoNS, S. aureus and other bacterial isolates to ciprofloxacin (11.1%-24.2%), gentamicin (5.6-31.0%), tobramycin (17.2% -25.3%) and vancomycin (0.0%). CoNS and S. aureus are the most common bacterial isolates found on the external ocular surface of the pre-operative cataract patients. Ciprofloxacin, gentamicin, tobramycin and vancomycin showed the lowest resistance rates to all bacterial isolates, therefore may be used to reduce bacteria load in the conjunctiva sac among cataract patients prior to surgery

    Dark sectors 2016 Workshop: community report

    Get PDF
    This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years

    Location of an inducible nitric oxide synthase mRNA in the normal kidney

    Get PDF
    Location of an inducible nitric oxide synthase mRNA in the normal kidney. An inducible nitric oxide synthase (iNOS) mRNA was found primarily in the outer medulla of normal rat kidney. Identification of the mRNA was based upon the specificity of the oligonucleotide primers used for PCR amplification, PCR-Southern blot analysis and the nucleic acid sequence of the cloned PCR product. In addition to the outer medulla, glomeruli prepared from normal rat kidney contained significant amounts of an iNOS mRNA. These results suggest that there may be tonic influences in the outer medulla of the normal rat kidney resulting in the “steady-state” presence of an iNOS mRNA. Cortical tubules and the inner medulla were found to contain detectable but lesser amounts of the iNOS mRNA. The outer medulla was microdis-sected into proximal straight tubule (PST), medullary thick ascending limb (MTAL), medullary collecting duct (MCD) and vasa recta bundle (VRB). The iNOS mRNA was found primarily in the MTAL with minor amounts in the MCD and VRB of normal rat kidney. Animals were injected with lipopolysaccharide (LPS) and sacrificed 24 hours later. Treatment with LPS caused at least a 20-fold increase in the amount of iNOS mRNA in the liver or in macrophages isolated from the peritoneum. Endotoxin treatment led to over a 10-fold increase in iNOS mRNA content in glomeruli and the inner medulla. The iNOS mRNA level of the outer medulla was increased two- to threefold due to LPS treatment
    corecore