13,152 research outputs found

    Possibility of "magic" co-trapping of two atomic species in optical lattices

    Full text link
    Much effort has been devoted to removing differential Stark shifts for atoms trapped in specially tailored "magic" optical lattices, but thus far work has focused on a single trapped atomic species. In this work, we extend these ideas to include two atomic species sharing the same optical lattice. We show qualitatively that, in particular, scalar J = 0 divalent atoms paired with non-scalar state atoms have the necessary characteristics to achieve such Stark shift cancellation. We then present numerical results on "magic" trapping conditions for 27Al paired with 87Sr, as well as several other divalent atoms.Comment: 5 pages, 2 figures, 1 tabl

    Assessing the utility of environmental factors and objectives in environmental impact assessment practice: Western Australian insights

    Get PDF
    Environmental factors and objectives are formally identified during the scoping stage of environmental impact assessment (EIA) to structure and focus individual assessments. Environmental factors are broad components of the environment, while objectives set the desired outcome for a specific factor. This research assesses the utility of environmental factors and objectives in EIA practice based upon a combination of literature review and interviews with 21 EIA practitioners from Western Australia. Further to providing focus and structure for EIA, practitioners also use environmental factors and objectives for decision-making throughout the process. The majority of practitioners also note that factors and objectives are value adding and useful to their EIA practice. Due to their inherent subjective natures, interviewees noted a lack of consistency regarding how to meet the objectives and challenges in determining the significance of impacts on a factor. Identified opportunities to enhance use of objectives and factors in EIA included provision of more guidance, especially criteria or standards to apply and improve knowledge sharing between EIA stakeholders

    On Krein-like theorems for noncanonical Hamiltonian systems with continuous spectra: application to Vlasov-Poisson

    Full text link
    The notions of spectral stability and the spectrum for the Vlasov-Poisson system linearized about homogeneous equilibria, f_0(v), are reviewed. Structural stability is reviewed and applied to perturbations of the linearized Vlasov operator through perturbations of f_0. We prove that for each f_0 there is an arbitrarily small delta f_0' in W^{1,1}(R) such that f_0+delta f_0isunstable.When is unstable. When f_0$ is perturbed by an area preserving rearrangement, f_0 will always be stable if the continuous spectrum is only of positive signature, where the signature of the continuous spectrum is defined as in previous work. If there is a signature change, then there is a rearrangement of f_0 that is unstable and arbitrarily close to f_0 with f_0' in W^{1,1}. This result is analogous to Krein's theorem for the continuous spectrum. We prove that if a discrete mode embedded in the continuous spectrum is surrounded by the opposite signature there is an infinitesimal perturbation in C^n norm that makes f_0 unstable. If f_0 is stable we prove that the signature of every discrete mode is the opposite of the continuum surrounding it.Comment: Submitted to the journal Transport Theory and Statistical Physics. 36 pages, 12 figure

    Scattering of electromagnetic waves in metamaterial superlattices

    Get PDF
    The authors study experimentally both transmission and reflection of microwave radiation from metamaterialsuperlattices created by layers of periodically arranged wires and split-ring resonators. The authors measure the dependence of the metamaterial resonance on the spatial period of the superlattice and demonstrate resonance broadening and splitting for the binary metamaterial structures.The authors acknowledge support from the Australian Research Council and thank Ekmel Ozbay for providing additional details of the experimental results published earlier by his group

    On the Theory of Superfluidity in Two Dimensions

    Full text link
    The superfluid phase transition of the general vortex gas, in which the circulations may be any non-zero integer, is studied. When the net circulation of the system is not zero the absence of a superfluid phase is shown. When the net circulation of the vortices vanishes, the presence of off-diagonal long range order is demonstrated and the existence of an order parameter is proposed. The transition temperature for the general vortex gas is shown to be the Kosterlitz---Thouless temperature. An upper bound for the average vortex number density is established for the general vortex gas and an exact expression is derived for the Kosterlitz---Thouless ensemble.Comment: 22 pages, one figure, written in plain TeX, published in J. Phys. A24 (1991) 502

    Ultraviolet to infrared emission of z>1 galaxies: Can we derive reliable star formation rates and stellar masses?

    Full text link
    We seek to derive star formation rates (SFR) and stellar masses (M_star) in distant galaxies and to quantify the main uncertainties affecting their measurement. We explore the impact of the assumptions made in their derivation with standard calibrations or through a fitting process, as well as the impact of the available data, focusing on the role of IR emission originating from dust. We build a sample of galaxies with z>1, all observed from the UV to the IR (rest frame). The data are fitted with the code CIGALE, which is also used to build and analyse a catalogue of mock galaxies. Models with different SFHs are introduced. We define different set of data, with or without a good sampling of the UV range, NIR, and thermal IR data. The impact of these different cases on the determination of M_star and SFR are analysed. Exponentially decreasing models with a redshift formation of the stellar population z ~8 cannot fit the data correctly. The other models fit the data correctly at the price of unrealistically young ages when the age of the single stellar population is taken to be a free parameter. The best fits are obtained with two stellar populations. As long as one measurement of the dust emission continuum is available, SFR are robustly estimated whatever the chosen model is, including standard recipes. M_star measurement is more subject to uncertainty, depending on the chosen model and the presence of NIR data, with an impact on the SFR-M_star scatter plot. Conversely, when thermal IR data from dust emission are missing, the uncertainty on SFR measurements largely exceeds that of stellar mass. Among all physical properties investigated here, the stellar ages are found to be the most difficult to constrain and this uncertainty acts as a second parameter in SFR measurements and as the most important parameter for M_star measurements.Comment: 14 pages, 14 figures, accepted for publication A&

    The Moment of Inertia of the Binary Pulsar J0737-3039A: Constraining the Nuclear Equation of State

    Full text link
    We construct numerical models of the newly discovered binary pulsar J0737-3039A, both with a fully relativistic, uniformly rotating, equilibrium code that handles arbitrary spins and in the relativistic, slow-rotation approximation. We compare results for a representative sample of viable nuclear equations of state (EOS) that span three, qualitatively different, classes of models for the description of nuclear matter. A future dynamical measurement of the neutron star's moment of inertia from pulsar timing data will impose significant constraints on the nuclear EOS. Even a moderately accurate measurement (<~ 10 %) may be able to rule out some of these competing classes. Using the measured mass, spin and moment of inertia to identify the optimal model computed from different EOSs, one can determine the pulsar's radius.Comment: 4 pages, ApJL in pres

    Mapping 6D N = 1 supergravities to F-theory

    Get PDF
    We develop a systematic framework for realizing general anomaly-free chiral 6D supergravity theories in F-theory. We focus on 6D (1, 0) models with one tensor multiplet whose gauge group is a product of simple factors (modulo a finite abelian group) with matter in arbitrary representations. Such theories can be decomposed into blocks associated with the simple factors in the gauge group; each block depends only on the group factor and the matter charged under it. All 6D chiral supergravity models can be constructed by gluing such blocks together in accordance with constraints from anomalies. Associating a geometric structure to each block gives a dictionary for translating a supergravity model into a set of topological data for an F-theory construction. We construct the dictionary of F-theory divisors explicitly for some simple gauge group factors and associated matter representations. Using these building blocks we analyze a variety of models. We identify some 6D supergravity models which do not map to integral F-theory divisors, possibly indicating quantum inconsistency of these 6D theories.Comment: 37 pages, no figures; v2: references added, minor typos corrected; v3: minor corrections to DOF counting in section

    On the use of projectors for Hamiltonian systems and their relationship with Dirac brackets

    Full text link
    The role of projectors associated with Poisson brackets of constrained Hamiltonian systems is analyzed. Projectors act in two instances in a bracket: in the explicit dependence on the variables and in the computation of the functional derivatives. The role of these projectors is investigated by using Dirac's theory of constrained Hamiltonian systems. Results are illustrated by three examples taken from plasma physics: magnetohydrodynamics, the Vlasov-Maxwell system, and the linear two-species Vlasov system with quasineutrality

    Near threshold rotational excitation of molecular ions by electron-impact

    Get PDF
    New cross sections for the rotational excitation of H3+_3^+ by electrons are calculated {\it ab initio} at low impact energies. The validity of the adiabatic-nuclei-rotation (ANR) approximation, combined with RR-matrix wavefunctions, is assessed by comparison with rovibrational quantum defect theory calculations based on the treatment of Kokoouline and Greene ({\it Phys. Rev. A} {\bf 68} 012703 2003). Pure ANR excitation cross sections are shown to be accurate down to threshold, except in the presence of large oscillating Rydberg resonances. These resonances occur for transitions with ΔJ=1\Delta J=1 and are caused by closed channel effects. A simple analytic formula is derived for averaging the rotational probabilities over such resonances in a 3-channel problem. In accord with the Wigner law for an attractive Coulomb field, rotational excitation cross sections are shown to be large and finite at threshold, with a significant but moderate contribution from closed channels.Comment: 3 figures, a5 page
    • …
    corecore