275 research outputs found

    Phase Structure of Lattice QCD at Finite Density with Dynamical Fermions

    Get PDF
    We compare the chemical potential associated with the onset of non-zero baryon number density on 646^4 and 848^4 lattices at ÎČ=5.1\beta=5.1 and ma=0.01. We provide evidence for Z(3)Z(3) tunnelling. We determine a critical chemical potential of ÎŒa≃0.1\mu a \simeq 0.1 which is unexpectedly low. We also determine the dependence of the onset of the observed phase transition on the quark mass. The physically misleading result of the quenched theory is shown to persist despite the inclusion of the complex fermion determinant.Comment: 3 pages, Latex, 5 postscript figures, Talk presented at LATTICE96(finite temperature

    Lattice Gauge Theory Simulations at Nonzero Chemical Potential in the Chiral Limit

    Get PDF
    We present a method of simulating lattice QCD at nonzero chemical potential in the chiral limit. By adding a weak four-fermi interaction to the standard staggered fermion SU(3) QCD action, we produce an algorithm in which the limit of massless fermions is well-behaved and physical. Using configurations at zero chemical potential, and an exact fugacity expansion of the fermion determinant, we can simulate QCD at nonzero chemical potential and evade the notorious problem of the complex action. Small lattice simulations give physical results: At strong gauge coupling the critical chemical potential \mu_c agrees with theoretical expectations and at weak gauge coupling \mu_c is nonzero in the low temperature confined phase of QCD and jumps to zero in the high temperature quark-gluon plasma phase. In all these simulations the quarks are exactly massless and there is a Goldstone pion.Comment: contains .tex file of text and three figures as .epsi file

    SLIP4EX- a program for routine slope stability analysis to include the effects of vegetation, reinforcement and hydrological changes

    Get PDF
    SLIP4EX is a straightforward computer program developed in connection with the EU funded ECOSLOPES project for routine stability analysis and the assessment of the contribution of vegetation to slope stability. The slope section is drawn up and dimensions and parameters are fed in to the Microsoft Excel based program for stability calculations and comparisons of Factors of Safety using different methods of analysis (Bishop, Janbu, Fellenius, Simple, Greenwood). The background and assumptions involved in the derivation of each of the methods is briefly described. The simplicity of the program enables the user to understand the nature of the analysis, explore the parameter assumptions made and compare the different methods of analysis. Soil reinforcement by geosynthetic layers or anchors, and vegetation effects of enhanced cohesion, changed water pressures, mass of vegetation, wind forces and root reinforcement forces are readily included in the analysis. The program is freely available on request from the author

    The Breakdown of Topology at Small Scales

    Full text link
    We discuss how a topology (the Zariski topology) on a space can appear to break down at small distances due to D-brane decay. The mechanism proposed coincides perfectly with the phase picture of Calabi-Yau moduli spaces. The topology breaks down as one approaches non-geometric phases. This picture is not without its limitations, which are also discussed.Comment: 12 pages, 2 figure

    Mirror Symmetry, Mirror Map and Applications to Calabi-Yau Hypersurfaces

    Full text link
    Mirror Symmetry, Picard-Fuchs equations and instanton corrected Yukawa couplings are discussed within the framework of toric geometry. It allows to establish mirror symmetry of Calabi-Yau spaces for which the mirror manifold had been unavailable in previous constructions. Mirror maps and Yukawa couplings are explicitly given for several examples with two and three moduli.Comment: 59 pages. Some changes in the references, a few minor points have been clarifie

    Classical dynamics of a two-species Bose-Einstein condensate in the presence of nonlinear maser processes

    Full text link
    The stability analysis of a generalized Dicke model, in the semi-classical limit, describing the interaction of a two-species Bose-Einstein condensate driven by a quantized field in the presence of Kerr and spontaneous parametric processes is presented. The transitions from Rabi to Josephson dynamics are identified depending on the relative value of the involved parameters. Symmetry-breaking dynamics are shown for both types of coherent oscillations due to the quantized field and nonlinear optical processes.Comment: 12 pages, 5 figures. Accepted for publication as chapter in "Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations in Nonlinear Systems

    GKZ-Generalized Hypergeometric Systems in Mirror Symmetry of Calabi-Yau Hypersurfaces

    Full text link
    We present a detailed study of the generalized hypergeometric system introduced by Gel'fand, Kapranov and Zelevinski (GKZ-hypergeometric system) in the context of toric geometry. GKZ systems arise naturally in the moduli theory of Calabi-Yau toric varieties, and play an important role in applications of the mirror symmetry. We find that the Gr\"obner basis for the so-called toric ideal determines a finite set of differential operators for the local solutions of the GKZ system. At the special point called the large radius limit, we find a close relationship between the principal parts of the operators in the GKZ system and the intersection ring of a toric variety. As applications, we analyze general three dimensional hypersurfaces of Fermat and non-Fermat types with Hodge numbers up to h1,1=3h^{1,1}=3. We also find and analyze several non Landau-Ginzburg models which are related to singular models.Comment: 55 pages, 3 Postscript figures, harvma

    The Nakayama automorphism of the almost Calabi-Yau algebras associated to SU(3) modular invariants

    Get PDF
    We determine the Nakayama automorphism of the almost Calabi-Yau algebra A associated to the braided subfactors or nimrep graphs associated to each SU(3) modular invariant. We use this to determine a resolution of A as an A-A bimodule, which will yield a projective resolution of A.Comment: 46 pages which constitutes the published version, plus an Appendix detailing some long calculations. arXiv admin note: text overlap with arXiv:1110.454

    An optimization principle for deriving nonequilibrium statistical models of Hamiltonian dynamics

    Full text link
    A general method for deriving closed reduced models of Hamiltonian dynamical systems is developed using techniques from optimization and statistical estimation. As in standard projection operator methods, a set of resolved variables is selected to capture the slow, macroscopic behavior of the system, and the family of quasi-equilibrium probability densities on phase space corresponding to these resolved variables is employed as a statistical model. The macroscopic dynamics of the mean resolved variables is determined by optimizing over paths of these probability densities. Specifically, a cost function is introduced that quantifies the lack-of-fit of such paths to the underlying microscopic dynamics; it is an ensemble-averaged, squared-norm of the residual that results from submitting a path of trial densities to the Liouville equation. The evolution of the macrostate is estimated by minimizing the time integral of the cost function. The value function for this optimization satisfies the associated Hamilton-Jacobi equation, and it determines the optimal relation between the statistical parameters and the irreversible fluxes of the resolved variables, thereby closing the reduced dynamics. The resulting equations for the macroscopic variables have the generic form of governing equations for nonequilibrium thermodynamics, and they furnish a rational extension of the classical equations of linear irreversible thermodynamics beyond the near-equilibrium regime. In particular, the value function is a thermodynamic potential that extends the classical dissipation function and supplies the nonlinear relation between thermodynamics forces and fluxes

    Numerical Portrait of a Relativistic Thin Film BCS Superfluid

    Get PDF
    We present results of numerical simulations of the 2+1d Nambu - Jona-Lasinio model with a non-zero baryon chemical potential mu including the effects of a diquark source term. Diquark condensates, susceptibilities and masses are measured as functions of source strength j. The results suggest that diquark condensation does not take place in the high density phase mu>mu_c, but rather that the condensate scales non-analytically with j implying a line of critical points and long range phase coherence. Analogies are drawn with the low temperature phase of the 2d XY model. The spectrum of the spin-1/2 sector is also studied yielding the quasiparticle dispersion relation. There is no evidence for a non-zero gap; rather the results are characteristic of a normal Fermi liquid with Fermi velocity less than that of light. We conclude that the high density phase of the model describes a relativistic gapless thin film BCS superfluid.Comment: 37 pages, 16 figure
    • 

    corecore