884 research outputs found

    Are there anxious genes?

    Get PDF
    Anxiety comprises many clinical descriptions and phenotypes. A genetic predisposition to anxiety is undoubted; however, the nature and extent of that contribution is still unclear. Methods for the genetic analysis of such complex disorders is briefly reviewed, followed by a discussion of the comorbidity of anxiety with other psychiatric disorders and their possible common genetic etiology. Extensive genetic studies of the serotonin (5-hydroxytryptamine, 5-HT) transporter (5-HTT) gene have revealed how variation in gene expression can be correlated with anxiety phenotypes. Complete genome-wide linkage scans for panic disorder (PD) susceptibility genes have suggested a locus on chromosome arm 7p, and association studies have highlighted many candidate genes. A highly significant association between phobias, panic disorder, and a duplication at chromosomal region 15q24-26 is one of the most exciting findings to date. Emerging molecular genetic technologies and the use of increasingly sophisticated animal models of anxiety provide great promise for the future of the field

    A glossary of relevant genetic terms.

    Get PDF

    The future of genetic testing for drug response

    Get PDF
    The effect of variation in genes coding for drug targets and for the enzymes involved in drug metabolism has highlighted the genetic component of drug response. Drug response can be likened to a complex, multifactorial genetic trait, and the study of its genetic variation, termed pharmacogenetics, is analogous to the study of complex genetic disease in terms of the questions posed and the analytical possibilities. Just as DNA variants are associated with specific disease predispositions, so will they be associated with individual response to certain drugs. The testing for drug response is following the same route as the genetic testing for inherited disorders, and has reached the stage where genome-wide analysis, as opposed to the analysis of single genes, is a reality. In this article, we will discuss some of the technical advances that facilitate such analyses, leading to faster and more extensive diagnostic capabilities

    Mutation in the V2 vasopressin receptor gene, AVPR2, causes nephrogenic syndrome of inappropriate diuresis

    Get PDF
    Nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is a recently discovered rare disease caused by gain-of-function mutations of the V2 vasopressin receptor gene, AVPR2. To date, mutations of Phe229 and Arg137 have been identified as gain-of-function in the V2 vasopressin receptor (V2R). These receptor mutations lead to hyponatremia, which may lead to clinical symptoms in infants. Here we present a newly identified I130N substitution in exon 2 of the V2R gene in a family, causing NSIAD. This I130N mutation resulted in constitutive activity of the V2R with constitutive cyclic adenosine monophosphate (cAMP) generation in HEK293 cells. This basal activity could be blocked by the inverse agonist tolvaptan and arginine-vasopressin stimulation enhanced the cAMP production of I130N-V2R. The mutation causes a biased receptor conformation as the basal cAMP generation activity of I130N does not lead to interaction with β-arrestin. The constitutive activity of the mutant receptor caused constitutive dynamin-dependent and β-arrestin-independent internalization. The inhibition of basal internalization using dominant-negative dynamin resulted in an increased cell surface expression. In contrast to the constitutive internalization, agonist-induced endocytosis was β-arrestin dependent. Thus, tolvaptan could be used for treatment of hyponatremia in patients with NSIAD who carry the I130N-V2R mutation.Kidney International advance online publication, 1 July 2015; doi:10.1038/ki.2015.181. © 2015 International Society of Nephrolog

    EMQN:Recommendations for genetic testing in inherited cardiomyopathies and arrhythmias

    Get PDF
    Inherited cardiomyopathies and arrhythmias (ICAs) are a prevalent and clinically heterogeneous group of genetic disorders that are associated with increased risk of sudden cardiac death and heart failure. Making a genetic diagnosis can inform the management of patients and their at-risk relatives and, as such, molecular genetic testing is now considered an integral component of the clinical care pathway. However, ICAs are characterised by high genetic and allelic heterogeneity, incomplete / age-related penetrance, and variable expressivity. Therefore, despite our improved understanding of the genetic basis of these conditions, and significant technological advances over the past two decades, identifying and recognising the causative genotype remains challenging. As clinical genetic testing for ICAs becomes more widely available, it is increasingly important for clinical laboratories to consolidate existing knowledge and experience to inform and improve future practice. These recommendations have been compiled to help clinical laboratories navigate the challenges of ICAs and thereby facilitate best practice and consistency in genetic test provision for this group of disorders. General recommendations on internal and external quality control, referral, analysis, result interpretation, and reporting are described. Also included are appendices that provide specific information pertinent to genetic testing for hypertrophic, dilated, and arrhythmogenic right ventricular cardiomyopathies, long QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia.</p

    The addition of genetic testing and cardiovascular magnetic resonance to routine clinical data for stratification of aetiology in dilated cardiomyopathy

    Get PDF
    Background: Guidelines recommend genetic testing and cardiovascular magnetic resonance (CMR) for the investigation of dilated cardiomyopathy (DCM). However, the incremental value is unclear. We assessed the impact of these investigations in determining etiology. Methods: Sixty consecutive patients referred with DCM and recruited to our hospital biobank were selected. Six independent experts determined the etiology of each phenotype in a step-wise manner based on (1) routine clinical data, (2) clinical and genetic data and (3) clinical, genetic and CMR data. They indicated their confidence (1-3) in the classification and any changes to management at each step. Results: Six physicians adjudicated 60 cases. The addition of genetics and CMR resulted in 57 (15.8%) and 26 (7.2%) changes in the classification of etiology, including an increased number of genetic diagnoses and a reduction in idiopathic diagnoses. Diagnostic confidence improved at each step (p < 0.0005). The number of diagnoses made with low confidence reduced from 105 (29.2%) with routine clinical data to 71 (19.7%) following the addition of genetics and 37 (10.3%) with the addition of CMR. The addition of genetics and CMR led to 101 (28.1%) and 112 (31.1%) proposed changes to management, respectively. Interobserver variability showed moderate agreement with clinical data (Îş = 0.44) which improved following the addition of genetics (Îş = 0.65) and CMR (Îş = 0.68). Conclusion: We demonstrate that genetics and CMR, frequently changed the classification of etiology in DCM, improved confidence and interobserver variability in determining the diagnosis and had an impact on proposed management
    • …
    corecore