40,569 research outputs found
Pension fund and fund manager performance measurement
Imperial Users onl
Metal drilling with portable hand drills
Study of metal drilling solves problems of excessive burring, oversized holes, and out-of-round holes. Recommendations deal with using the proper chemical coolants, applying the coolants effectively, employing cutting oils, and dissipating the heat caused by drilling
Charged Vacuum Bubble Stability
A type of scenario is considered where electrically charged vacuum bubbles,
formed from degenerate or nearly degenerate vacuua separated by a thin domain
wall, are cosmologically produced due to the breaking of a discrete symmetry,
with the bubble charge arising from fermions residing within the domain wall.
Stability issues associated with wall tension, fermion gas, and Coulombic
effects for such configurations are examined. The stability of a bubble depends
upon parameters such as the symmetry breaking scale and the fermion coupling. A
dominance of either the Fermi gas or the Coulomb contribution may be realized
under certain conditions, depending upon parameter values.Comment: 16 pages,revtex; accepted for publication in Phys.Rev.
Molar mass and solution conformation of branched alpha(1 - 4), alpha(1 - 6) Glucans. Part I: Glycogens in water
Solution molar masses and conformations of glycogens from different sources (rabbit, oyster, mussel and bovine) were analysed using sedimentation velocity in the analytical ultracentrifuge, size-exclusion chromatography coupled to multi-angle laser light scattering (SEC-MALLS), size-exclusion chromatography coupled to a differential pressure viscometer and dynamic light scattering. Rabbit, oyster and mussel glycogens consisted of one population of high molar mass (weight averages ranging from 4.6 x 106 to 1.1 x 107 g/mol) as demonstrated by sedimentation velocity and SEC-MALLS, whereas bovine glycogen had a bimodal distribution of significantly lower molar mass (1.0 x 105 and 4.5 x 105 g/mol). The spherical structure of all glycogen molecules was demonstrated in the slopes of the Mark-Houwink-Kuhn-Sakurada-type power-law relations for sedimentation coefficient (s20,wo), intrinsic viscosity ([η]), radius of gyration (rg,z) and radius of hydration (rH,z), respectively, and was further supported by the � (=rg,z/rH,z) function, the fractal dimension and the Perrin function. The degree of branching was estimated to be ∼10% from the shrinking factors, g′ (=[η]branched/[η]linear) and also h (=(f/fo)branched/(f/fo)linear), respectively, where (f/fo) is the translational frictional ratio, consistent with expectation. © 2007 Elsevier Ltd. All rights reserved
Measurement of Antenna Surfaces from In- and Out-Of-Focus Beam Maps using Astronomical Sources
We present a technique for the accurate estimation of large-scale errors in
an antenna surface using astronomical sources and detectors. The technique
requires several out-of-focus images of a compact source and the
signal-to-noise ratio needs to be good but not unreasonably high. For a given
pattern of surface errors, the expected form of such images can be calculated
directly. We show that it is possible to solve the inverse problem of finding
the surface errors from the images in a stable manner using standard numerical
techniques. To do this we describe the surface error as a linear combination of
a suitable set of basis functions (we use Zernike polynomials). We present
simulations illustrating the technique and in particular we investigate the
effects of receiver noise and pointing errors. Measurements of the 15-m James
Clerk Maxwell telescope made using this technique are presented as an example.
The key result is that good measurements of errors on large spatial scales can
be obtained if the input images have a signal-to-noise ratio of order 100 or
more. The important advantage of this technique over transmitter-based
holography is that it allows measurements at arbitrary elevation angles, so
allowing one to characterise the large scale deformations in an antenna as a
function of elevation.Comment: 6 pages, 5 figures (accepted by Astronomy & Astrophysics
Computer acquired performance data from a chemically vapor-deposited-rhenium, niobium planar diode
Performance data from a chemically vapor-deposited-rhenium, niobium thermionic converter are presented. The planar converter has a guard-ringed collector and a nominal fixed spacing of 0.25 mm (10 mils). The data were obtained by using a computerized acquisition system and are available on request to one of the authors on microfiche as individual and composite parametric current, voltage curves. The parameters are the temperatures of the emitter T sub E collector T sub C, and cesium reservoir T sub R. The composite plots have constant T sub E and varying T sub C or T sub R, or both. Current, voltage envelopes having constant T sub E with and without fixed T sub C appear in the present report. The diode was tested at increments between 1600 and 2000 K for the emitter Hohlraum, 800 to 1100 K for the collector, and 540 and 650 K for the reservoir. A total of 312 current, voltage curves were obtained in the present performance evaluation. Current, voltage envelopes from three rhenium emitter converters evaluated in the present program are also given. The data are compared at commom emitter Hohlraum temperatures
QSO hosts and environments at z=0.9 to 4.2: JHK images with adaptive optics
We have observed nine QSOs with redshifts 0.85 to 4.16 at near-IR wavelengths
with the adaptive optics bonnette of the Canada-France-Hawaii telescope.
Exposure times ranged from 1500 to 24000s (mostly near 7000s) in J, H, or K
bands, with pixels 0.035 arcsec on the sky. The FWHM of the co-added images at
the location of the quasars are typically 0.16 arcsec. Including another QSO
published previously, we find associated QSO structure in at least eight of ten
objects, including the QSO at z = 4.16. The structures seen in all cases
include long faint features which appear to be tidal tails. In four cases we
have also resolved the QSO host galaxy, but find them to be smooth and
symmetrical: future PSF removal may expand this result. Including one object
previously reported, of the nine objects with more extended structure, five are
radio-loud, and all but one of these appear to be in a dense small group of
compact galaxy companions. The radio-quiet objects do not occupy the same dense
environments, as seen in the NIR. In this small sample we do not find any
apparent trends of these properties with redshift, over the range 0.8 < z <
2.4. The colors of the host galaxies and companions are consistent with young
stellar populations at the QSO redshift. Our observations suggest that adaptive
optic observations in the visible region will exhibit luminous signatures of
the substantial star-formation activity that must be occurring.Comment: 22 pages including 10 tables, plus 11 figures. To appear in A
High Proper Motion Stars in the Vicinity of Sgr A*: Evidence for a Supermassive Black Hole at the Center of Our Galaxy
Over a two year period (1995-1997), we have conducted a diffraction-limited
imaging study at 2.2 microns of the inner 6"x6" of the Galaxy's central stellar
cluster using the Keck 10-m telescope. The K band images obtained reveal a
large population of faint stars. We use an unbiased approach for identifying
and selecting stars to be included in this proper motion study, which results
in a sample of 90 stars with brightness ranging from K=9-17 and velocities as
large as 1,400+-100 km/sec. Compared to earlier work (Eckart et al. 1997;
Genzel et al. 1997), the source confusion is reduced by a factor of 9, the
number of stars with proper motion measurement in the central 25 arcsec^2 of
our galaxy is doubled, and the accuracy of the velocity measurements in the
central 1 arcsec^2 is improved by a factor of 4. The peaks of both the stellar
surface density and the velocity dispersion are consistent with the position of
the unusual radio source and blackhole candidate, Sgr A*, suggesting that Sgr
A* is coincident (+-0."1) with the dynamical center of the Galaxy. As a
function of distance from Sgr A*, the velocity dispersion displays a falloff
well fit by Keplerian motion about a central dark mass of 2.6(+-0.2)x10^6 Mo
confined to a volume of at most 10^-6 pc^3, consistent with earlier results.
Although uncertainties in the measurements mathematically allow for the matter
to be distributed over this volume as a cluster, no realistic cluster is
physically tenable. Thus, independent of the presence of Sgr A*, the large
inferred central density of at least 10^12 Mo/pc^3, which exceeds the
volume-averaged mass densities found at the center of any other galaxy, leads
us to the conclusion that our Galaxy harbors a massive central black hole.Comment: 19 pages, 8 figures, accepted for publications in the Astrophysical
Journa
- …