40,542 research outputs found
Turbulence and modeling in transonic flow
A review is made of the performance of a variety of turbulence models in the evaluation of a particular well documented transonic flow. This is done to supplement a previous attempt to calibrate and verify transonic airfoil codes by including many more turbulence models than used in the earlier work and applying the calculations to an experiment that did not suffer from uncertainties in angle of attack and was free of wind tunnel interference. It is found from this work, as well as in the earlier study, that the Johnson-King turbulence model is superior for transonic flows over simple aerodynamic surfaces, including moderate separation. It is also shown that some field equation models with wall function boundary conditions can be competitive with it
A simulator study of the supersonic transport in the air traffic control system
Real time environment and control simulation of supersonic transport in air traffic control syste
Navier-Stokes calculations and turbulence modeling in the trailing edge region of a circulation control airfoil
The accurate prediction of turbulent flows over curved surfaces in general and over the trailing edge region of circulation control airfoils in particular requires the coupled efforts of turbulence modelers, numerical analysts and experimentalists. The purpose of the research program in this area is described. Then, the influence on turbulence modeling of the flow characteristics over a typical circulation control wing is discussed. Next, the scope of this effort to study turbulence in the trailing edge region of a circulation control airfoil is presented. This is followed by a brief overview of the computation scheme, including the grid, governing equations, numerical method, boundary conditions and turbulence models applied to date. Then, examples of applications of two algebraic eddy viscosity models to the trailing edge region of a circulation control airfoil is presented. The results from the calculations is summarized, and conclusions drawn based on examples. Finally, the future directions of the program is outlined
A Nonthermal Radio Filament Connected to the Galactic Black Hole?
Using the Very Large Array, we have investigated a non-thermal radio filament
(NTF) recently found very near the Galactic black hole and its radio
counterpart, SgrA*. While this NTF -- the Sgr A West Filament (SgrAWF) --
shares many characteristics with the population of NTFs occupying the central
few hundred parsecs of the Galaxy, the SgrAWF has the distinction of having an
orientation and sky location that suggest an intimate physical connection to
SgrA*. We present 3.3 and 5.5 cm images constructed using an innovative
methodology that yields a very high dynamic range, providing an unprecedentedly
clear picture of the SgrAWF. While the physical association of the SgrAWF with
SgrA* is not unambiguous, the images decidedly evoke this interesting
possibility. Assuming that the SgrAWF bears a physical relationship to SgrA*,
we examine the potential implications. One is that SgrA* is a source of
relativistic particles constrained to diffuse along ordered local field lines.
The relativistic particles could also be fed into the local field by a
collimated outflow from SgrA*, perhaps driven by the Poynting flux accompanying
the black hole spin in the presence of a magnetic field threading the event
horizon. Second, we consider the possibility that the SgrAWF is the
manifestation of a low-mass-density cosmic string that has become anchored to
the black hole. The simplest form of these hypotheses would predict that the
filament be bi-directional, whereas the SgrAWF is only seen on one side of
SgrA*, perhaps because of the dynamics of the local medium.Comment: 9 pages, 4 figures, accepted for ApJ Letter
A New Perspective of the Radio Bright Zone at The Galactic Center: Feedback from Nuclear Activities
New observations of Sgr A have been carried out with the VLA using the
broadband (2 GHz) continuum mode at 5.5 GHz, covering the central 30 pc region
of the RBZ at the Galactic center. Using the MS-MFS algorithms in CASA, we have
imaged Sgr A with a resolution of 1", achieving an rms 8 Jy/beam, and a
dynamic range 100,000:1.The radio image is compared with X-ray, CN
emission-line and Paschen- images obtained using Chandra, SMA and
HST/NICMOS, respectively. We discuss several prominent radio features. The "Sgr
A West Wings" extend 5 pc from the NW and SE tips of the ionized "Mini-spiral"
in Sgr A West to positions located 2.9 and 2.4 arc min to the NW and SE of Sgr
A*, respectively. The NW wing, along with several other prominent features,
including the "NW Streamers", form an elongated radio lobe (NW lobe), oriented
nearly perpendicular to the Galactic plane. This radio lobe, with a size of
14.4 pc x 7.3 pc, has a known X-ray counterpart. A row of three thermally
emitting rings is observed in the NW lobe. A field containing numerous
amorphous radio blobs extends for a distance of ~2 arc min beyond the tip of
the SE wing; these features coincide with the SE X-ray lobe. Most of the
amorphous radio blobs in the NW and SE lobes have Paschen-
counterparts, suggesting that a shock interaction of ambient gas concentrations
with a collimated nuclear wind (outflow) that may be driven by radiation force
from the central star cluster within the CND. Finally, we remark on a prominent
radio feature located within the shell of the Sgr A East SNR. Because this
feature -- the "Sigma Front" -- correlates well in shape and orientation with
the nearby edge of the CND, we propose that it is a reflected shock wave
resulting from the impact of the Sgr A East blast wave on the CND.Comment: 18 pages, 9 figures, ApJ accepte
- …