595 research outputs found

    Some effects of small-scale metallicity variations in cooling flows

    Full text link
    In an attempt to reconcile recent spectral data with predictions of the standard cooling flow model, it has been suggested that the metals in the intracluster medium (ICM) might be distributed inhomogeneously on small scales. We investigate the possible consequences of such a situation within the framework of the cooling flow scenario. Using the standard isobaric cooling flow model, we study the ability of such metallicity variations to preferentially suppress low-temperature line emission in cooling flow spectra. We then use simple numerical simulations to investigate the temporal and spatial evolution of the ICM when the metals are distributed in such a fashion. Simulated observations are used to study the constraints real data can place on conditions in the ICM. The difficulty of ruling out abundance variations on small spatial scales with current observational limits is emphasized. We find that a bimodal distribution of metals may give rise to interesting effects in the observed abundance profile, in that apparent abundance gradients with central abundance drops and off-centre peaks, similar to those seen recently in some clusters, are produced. Different elements behave in different fashion as governed by the temperature dependence of their equivalent widths. Our overall conclusion is that, whilst this process alone seems unlikely to be able to account for the sharp reduction in low temperature emission lines seen in current spectral data, a contribution at some level is possible and difficult to rule out. The possibility of small-scale metallicity variations should be considered when analysing high resolution cluster X-ray spectra.Comment: 14 pages, 10 figures. Accepted for publication in MNRA

    The Metallicity of the Intracluster Medium Over Cosmic Time: Further Evidence for Early Enrichment

    Get PDF
    We use Chandra X-ray data to measure the metallicity of the intracluster medium (ICM) in 245 massive galaxy clusters selected from X-ray and Sunyaev-Zel'dovich (SZ) effect surveys, spanning redshifts 0<z<1.20<z<1.2. Metallicities were measured in three different radial ranges, spanning cluster cores through their outskirts. We explore trends in these measurements as a function of cluster redshift, temperature, and surface brightness "peakiness" (a proxy for gas cooling efficiency in cluster centers). The data at large radii (0.5--1 r500r_{500}) are consistent with a constant metallicity, while at intermediate radii (0.1-0.5 r500r_{500}) we see a late-time increase in enrichment, consistent with the expected production and mixing of metals in cluster cores. In cluster centers, there are strong trends of metallicity with temperature and peakiness, reflecting enhanced metal production in the lowest-entropy gas. Within the cool-core/sharply peaked cluster population, there is a large intrinsic scatter in central metallicity and no overall evolution, indicating significant astrophysical variations in the efficiency of enrichment. The central metallicity in clusters with flat surface brightness profiles is lower, with a smaller intrinsic scatter, but increases towards lower redshifts. Our results are consistent with other recent measurements of ICM metallicity as a function of redshift. They reinforce the picture implied by observations of uniform metal distributions in the outskirts of nearby clusters, in which most of the enrichment of the ICM takes place before cluster formation, with significant later enrichment taking place only in cluster centers, as the stellar populations of the central galaxies evolve.Comment: 13 pages. Accepted version, to appear in MNRA

    Cosmology and Astrophysics from Relaxed Galaxy Clusters I: Sample Selection

    Full text link
    This is the first in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here we present a new, automated method for identifying relaxed clusters based on their morphologies in X-ray imaging data. While broadly similar to others in the literature, the morphological quantities that we measure are specifically designed to provide a fair basis for comparison across a range of data quality and cluster redshifts, to be robust against missing data due to point-source masks and gaps between detectors, and to avoid strong assumptions about the cosmological background and cluster masses. Based on three morphological indicators - Symmetry, Peakiness and Alignment - we develop the SPA criterion for relaxation. This analysis was applied to a large sample of cluster observations from the Chandra and ROSAT archives. Of the 361 clusters which received the SPA treatment, 57 (16 per cent) were subsequently found to be relaxed according to our criterion. We compare our measurements to similar estimators in the literature, as well as projected ellipticity and other image measures, and comment on trends in the relaxed cluster fraction with redshift, temperature, and survey selection method. Code implementing our morphological analysis will be made available on the web.Comment: MNRAS, in press. 43 pages in total, of which 17 are tables (please think twice before printing). 18 figures, 4 tables. Machine-readable tables will be available from the journal and at the url below; code will be posted at http://www.slac.stanford.edu/~amantz/work/morph14

    Cosmology and Astrophysics from Relaxed Galaxy Clusters II: Cosmological Constraints

    Full text link
    We present cosmological constraints from measurements of the gas mass fraction, fgasf_{gas}, for massive, dynamically relaxed galaxy clusters. Our data set consists of Chandra observations of 40 such clusters, identified in a comprehensive search of the Chandra archive, as well as high-quality weak gravitational lensing data for a subset of these clusters. Incorporating a robust gravitational lensing calibration of the X-ray mass estimates, and restricting our measurements to the most self-similar and accurately measured regions of clusters, significantly reduces systematic uncertainties compared to previous work. Our data for the first time constrain the intrinsic scatter in fgasf_{gas}, (7.4±2.3)(7.4\pm2.3)% in a spherical shell at radii 0.8-1.2 r2500r_{2500}, consistent with the expected variation in gas depletion and non-thermal pressure for relaxed clusters. From the lowest-redshift data in our sample we obtain a constraint on a combination of the Hubble parameter and cosmic baryon fraction, h3/2Ωb/Ωm=0.089±0.012h^{3/2}\Omega_b/\Omega_m=0.089\pm0.012, that is insensitive to the nature of dark energy. Combined with standard priors on hh and Ωbh2\Omega_b h^2, this provides a tight constraint on the cosmic matter density, Ωm=0.27±0.04\Omega_m=0.27\pm0.04, which is similarly insensitive to dark energy. Using the entire cluster sample, extending to z>1z>1, we obtain consistent results for Ωm\Omega_m and interesting constraints on dark energy: ΩΛ=0.65−0.22+0.17\Omega_\Lambda=0.65^{+0.17}_{-0.22} for non-flat Λ\LambdaCDM models, and w=−0.98±0.26w=-0.98\pm0.26 for flat constant-ww models. Our results are both competitive and consistent with those from recent CMB, SNIa and BAO data. We present constraints on models of evolving dark energy from the combination of fgasf_{gas} data with these external data sets, and comment on the possibilities for improved fgasf_{gas} constraints using current and next-generation X-ray observatories and lensing data. (Abridged)Comment: 25 pages, 14 figures, 8 tables. Accepted by MNRAS. Code and data can be downloaded from http://www.slac.stanford.edu/~amantz/work/fgas14/ . v2: minor fix to table 1, updated bibliograph
    • …
    corecore