42,996 research outputs found
Growth and optical properties of self-assembled InGaAs Quantum Posts
We demonstrate a method to grow height controlled, dislocation-free InGaAs
quantum posts (QPs) on GaAs by molecular beam epitaxy (MBE) which is confirmed
by structural investigations. The optical properties are compared to realistic
8-band k.p calculations of the electronic structure which fully account for
strain and the structural properties of the QP. Using QPs embedded in n-i-p
junctions we find wide range tunability of the interband spectrum and giant
static dipole moments.Comment: Proccedings paper for MSS-13, 7 pages, 4 figure
Wave climate model of the Mid-Atlantic shelf and shoreline (Virginian Sea): Model development, shelf geomorphology, and preliminary results
A computerized wave climate model is developed that applies linear wave theory and shelf depth information to predict wave behavior as they pass over the continental shelf as well as the resulting wave energy distributions along the coastline. Reviewed are also the geomorphology of the Mid-Atlantic Continental Shelf, wave computations resulting from 122 wave input conditions, and a preliminary analysis of these data
Data management study, volume 5. Appendix K - Contractor data package data management /DM/ Final report
Contractor data management system for Voyager projec
Relaxation of strained silicon on Si0.5Ge0.5 virtual substrates
Strain relaxation has been studied in tensile strained silicon layers grown on Si0.5Ge0.5 virtual substrates, for layers many times the critical thickness, using high resolution x-ray diffraction. Layers up to 30 nm thick were found to relax less than 2% by the glide of preexisting 60° dislocations. Relaxation is limited because many of these dislocations dissociate into extended stacking faults that impede the dislocation glide. For thicker layers, nucleated microtwins were observed, which significantly increased relaxation to 14%. All these tensile strained layers are found to be much more stable than layers with comparable compressive strain
Tone-excited jet: Theory and experiments
A detailed study to understand the phenomenon of broadband jet-noise amplification produced by upstream discrete-tone sound excitation has been carried out. This has been achieved by simultaneous acquisition of the acoustic, mean velocity, turbulence intensities, and instability-wave pressure data. A 5.08 cm diameter jet has been tested for this purpose under static and also flight-simulation conditions. An open-jet wind tunnel has been used to simulate the flight effects. Limited data on heated jets have also been obtained. To improve the physical understanding of the flow modifications brought about by the upstream discrete-tone excitation, ensemble-averaged schlieren photographs of the jets have also been taken. Parallel to the experimental study, a mathematical model of the processes that lead to broadband-noise amplification by upstream tones has been developed. Excitation of large-scale turbulence by upstream tones is first calculated. A model to predict the changes in small-scale turbulence is then developed. By numerically integrating the resultant set of equations, the enhanced small-scale turbulence distribution in a jet under various excitation conditions is obtained. The resulting changes in small-scale turbulence have been attributed to broadband amplification of jet noise. Excellent agreement has been found between the theory and the experiments. It has also shown that the relative velocity effects are the same for the excited and the unexcited jets
Personalized Pancreatic Tumor Growth Prediction via Group Learning
Tumor growth prediction, a highly challenging task, has long been viewed as a
mathematical modeling problem, where the tumor growth pattern is personalized
based on imaging and clinical data of a target patient. Though mathematical
models yield promising results, their prediction accuracy may be limited by the
absence of population trend data and personalized clinical characteristics. In
this paper, we propose a statistical group learning approach to predict the
tumor growth pattern that incorporates both the population trend and
personalized data, in order to discover high-level features from multimodal
imaging data. A deep convolutional neural network approach is developed to
model the voxel-wise spatio-temporal tumor progression. The deep features are
combined with the time intervals and the clinical factors to feed a process of
feature selection. Our predictive model is pretrained on a group data set and
personalized on the target patient data to estimate the future spatio-temporal
progression of the patient's tumor. Multimodal imaging data at multiple time
points are used in the learning, personalization and inference stages. Our
method achieves a Dice coefficient of 86.8% +- 3.6% and RVD of 7.9% +- 5.4% on
a pancreatic tumor data set, outperforming the DSC of 84.4% +- 4.0% and RVD
13.9% +- 9.8% obtained by a previous state-of-the-art model-based method
Marshall Space Flight Center Research and Technology Report 2018
Many of NASAs missions would not be possible if it were not for the investments made in research advancements and technology development efforts. The technologies developed at Marshall Space Flight Center contribute to NASAs strategic array of missions through technology development and accomplishments. The scientists, researchers, and technologists of Marshall Space Flight Center who are working these enabling technology efforts are facilitating NASAs ability to fulfill the ambitious goals of innovation, exploration, and discovery
A Spitzer Study of the Mass Loss Histories of Three Bipolar Pre-Planetary Nebulae
We present the results of far-infrared imaging of extended regions around
three bipolar pre-planetary nebulae, AFGL 2688, OH 231.8+4.2, and IRAS
163423814, at 70 and 160 m with the MIPS instrument on the Spitzer
Space Telescope. After a careful subtraction of the point spread function of
the central star from these images, we place constraints on the existence of
extended shells and thus on the mass outflow rates as a function of radial
distance from these stars. We find no apparent extended emission in AFGL 2688
and OH 231.8+4.2 beyond 100 arcseconds from the central source. In the case of
AFGL 2688, this result is inconsistent with a previous report of two extended
dust shells made on the basis of ISO observations. We derive an upper limit of
M yr and M
yr for the dust mass loss rate of AFGL 2688 and OH 231.8, respectively,
at 200 arcseconds from each source. In contrast to these two sources, IRAS
163423814 does show extended emission at both wavelengths, which can be
interpreted as a very large dust shell with a radius of 400 arcseconds
and a thickness of 100 arcseconds, corresponding to 4 pc and 1 pc,
respectively, at a distance of 2 kpc. However, this enhanced emission may also
be galactic cirrus; better azimuthal coverage is necessary for confirmation of
a shell. If the extended emission is a shell, it can be modeled as enhanced
mass outflow at a dust mass outflow rate of M
yr superimposed on a steady outflow with a dust mass outflow rate of
M yr. It is likely that this shell has swept
up a substantial mass of interstellar gas during its expansion, so these
estimates are upper limits to the stellar mass loss rate.Comment: 31 pages, 12 figures, accepted to A
Field-induced coupled superconductivity and spin density wave order in the Heavy Fermion compound CeCoIn5
The high field superconducting state in CeCoIn5 has been studied by
transverse field muon spin rotation measurements with an applied field parallel
to the crystallographic c-axis close to the upper critical field Hc2 = 4.97 T.
At magnetic fields >= 4.8 T the muon Knight shift is enhanced and the
superconducting transition changes from second order towards first order as
predicted for Pauli-limited superconductors. The field and temperature
dependence of the transverse muon spin relaxation rate sigma reveal
paramagnetic spin fluctuations in the field regime from 2 T < H < 4.8 T. In the
normal state close to Hc2 correlated spin fluctuations as described by the self
consistent renormalization theory are observed. The results support the
formation of a mode-coupled superconducting and antiferromagnetically ordered
phase in CeCoIn5 for H directed parallel to the c-axis.Comment: 5 paes, 4 figure
- …