1,235 research outputs found

    A shocking twist

    Get PDF

    Making history: intentional capture of future memories

    Get PDF
    Lifelogging' technology makes it possible to amass digital data about every aspect of our everyday lives. Instead of focusing on such technical possibilities, here we investigate the way people compose long-term mnemonic representations of their lives. We asked 10 families to create a time capsule, a collection of objects used to trigger remembering in the distant future. Our results show that contrary to the lifelogging view, people are less interested in exhaustively digitally recording their past than in reconstructing it from carefully selected cues that are often physical objects. Time capsules were highly expressive and personal, many objects were made explicitly for inclusion, however with little object annotation. We use these findings to propose principles for designing technology that supports the active reconstruction of our future past

    Virtual Coronary Intervention: A Treatment Planning Tool Based Upon the Angiogram

    Get PDF
    Objectives: This study sought to assess the ability of a novel virtual coronary intervention (VCI) tool based on invasive angiography to predict the patient's physiological response to stenting. Background: Fractional flow reserve (FFR)-guided percutaneous coronary intervention (PCI) is associated with improved clinical and economic outcomes compared with angiographic guidance alone. Virtual (v)FFR can be calculated based upon a 3-dimensional (3D) reconstruction of the coronary anatomy from the angiogram, using computational fluid dynamics (CFD) modeling. This technology can be used to perform virtual stenting, with a predicted post-PCI FFR, and the prospect of optimized treatment planning. Methods: Patients undergoing elective PCI had pressure-wire-based FFR measurements pre- and post-PCI. A 3D reconstruction of the diseased artery was generated from the angiogram and imported into the VIRTUheart workflow, without the need for any invasive physiological measurements. VCI was performed using a radius correction tool replicating the dimensions of the stent deployed during PCI. Virtual FFR (vFFR) was calculated pre- and post-VCI, using CFD analysis. vFFR pre- and post-VCI were compared with measured (m)FFR pre- and post-PCI, respectively. Results: Fifty-four patients and 59 vessels underwent PCI. The mFFR and vFFR pre-PCI were 0.66 ± 0.14 and 0.68 ± 0.13, respectively. Pre-PCI vFFR deviated from mFFR by ±0.05 (mean Δ = -0.02; SD = 0.07). The mean mFFR and vFFR post-PCI/VCI were 0.90 ± 0.05 and 0.92 ± 0.05, respectively. Post-VCI vFFR deviated from post-PCI mFFR by ±0.02 (mean Δ = -0.01; SD = 0.03). Mean CFD processing time was 95 s per case. Conclusions: The authors have developed a novel VCI tool, based upon the angiogram, that predicts the physiological response to stenting with a high degree of accuracy

    Effect of side branch flow upon physiological indices in coronary artery disease

    Get PDF
    Recent efforts have demonstrated the ability of computational models to predict fractional flow reserve from coronary artery imaging without the need for invasive instrumentation. However, these models include only larger coronary arteries as smaller side branches cannot be resolved and are therefore neglected. The goal of this study was to evaluate the impact of neglecting the flow to these side branches when computing angiography-derived fractional flow reserve (vFFR) and indices of volumetric coronary artery blood flow. To compensate for the flow to side branches, a leakage function based upon vessel taper (Murray’s Law) was added to a previously developed computational model of coronary blood flow. The augmented model with a leakage function (1Dleaky) and the original model (1D) were then applied to predict FFR as well as inlet and outlet flow in 146 arteries from 80 patients who underwent invasive coronary angiography and FFR measurement. The results show that the leakage function did not significantly change the vFFR but did significantly impact the estimated volumetric flow rate and predicted coronary flow reserve. As both procedures achieved similar predictive accuracy of vFFR despite large differences in coronary blood flow, these results suggest careful consideration of the application of this index for quantitatively assessing flow

    Differentially Private Exponential Random Graphs

    Full text link
    We propose methods to release and analyze synthetic graphs in order to protect privacy of individual relationships captured by the social network. Proposed techniques aim at fitting and estimating a wide class of exponential random graph models (ERGMs) in a differentially private manner, and thus offer rigorous privacy guarantees. More specifically, we use the randomized response mechanism to release networks under ϵ\epsilon-edge differential privacy. To maintain utility for statistical inference, treating the original graph as missing, we propose a way to use likelihood based inference and Markov chain Monte Carlo (MCMC) techniques to fit ERGMs to the produced synthetic networks. We demonstrate the usefulness of the proposed techniques on a real data example.Comment: minor edit

    The Magnetic Field of the Solar Corona from Pulsar Observations

    Full text link
    We present a novel experiment with the capacity to independently measure both the electron density and the magnetic field of the solar corona. We achieve this through measurement of the excess Faraday rotation due to propagation of the polarised emission from a number of pulsars through the magnetic field of the solar corona. This method yields independent measures of the integrated electron density, via dispersion of the pulsed signal and the magnetic field, via the amount of Faraday rotation. In principle this allows the determination of the integrated magnetic field through the solar corona along many lines of sight without any assumptions regarding the electron density distribution. We present a detection of an increase in the rotation measure of the pulsar J1801-2304 of approximately 160 \rad at an elongation of 0.95^\circ from the centre of the solar disk. This corresponds to a lower limit of the magnetic field strength along this line of sight of >393μG> 393\mu\mathrm{G}. The lack of precision in the integrated electron density measurement restricts this result to a limit, but application of coronal plasma models can further constrain this to approximately 20mG, along a path passing 2.5 solar radii from the solar limb. Which is consistent with predictions obtained using extensions to the Source Surface models published by Wilcox Solar ObservatoryComment: 16 pages, 4 figures (1 colour): Submitted to Solar Physic

    Magnetotransport studies of SiGe-based p-type heterostructures: problems of the effective mass determination

    No full text
    The Shubnikov–de Haas oscillations method of the effective mass extraction was illustrated by the magnetotransport properties investigation of two-dimensional hole gas in Si₁₋xGex (x = 0.13, 0.36, 0.95, 0.98) QWs. We have found that for certain samples our data cannot be fitted to standard theoretical curves in which the scattering of charge carriers is described by conventional Dingle factor. It is demonstrated that reasons of deviations of the experiment from the theory are as follows; (i) influence of the spin splitting on amplitude of SdH oscillations maxima; (ii) extra broadening of the Landau levels attributed to existence of inhomogeneous distribution of the carrier concentration; (iii) the influence of the concurrent existence of short and long-range scattering potentials; (iv) the population of second energy level in the quantum well. The ways to calculate the effective masses m* of holes in all cases are presented and values of m* are found for studied heterostructures
    corecore