254 research outputs found

    Combining AI Methods for Learning Bots in a Real Time Strategy Game

    Get PDF
    We describe an approach for simulating human game-play in strategy games using a variety of AI techniques, including simulated annealing, decision tree learning, and case-based reasoning. We have implemented an AI-bot that uses these techniques to form a novel approach for planning fleet movements and attacks in DEFCON, a nuclear war simulation strategy game released in 2006 by Introversion Software Ltd. The AI-bot retrieves plans from a case-base of recorded games, then uses these to generate a new plan using a method based on decision tree learning. In addition, we have implemented more sophisticated control over low-level actions that enable the AI-bot to synchronize bombing runs, and used a simulated annealing approach for assigning bombing targets to planes and opponent cities to missiles. We describe how our AI-bot operates, and the experimentation we have performed in order to determine an optimal configuration for it. With this configuration, our AI-bot beats Introversion's finite state machine automated player in 76.7% of 150 matches played. We briefly introduce the notion of ability versus enjoyability and discuss initial results of a survey we conducted with human players

    Loss of Connective Tissue Growth Factor Expression Promotes Remodeling of the Extracellular Matrix and Epithelial-to-Mesenchymal Transition in Ovarian Cancer

    Get PDF
    Background: Ovarian Cancer (OC) is the leading cause of death from gynecologic malignancies in the United States largely due to the advanced stage at the time of diagnosis. Epithelial-to-mesenchymal transition (EMT) is a key biological process implicated in the pathophysiology of the metastatic spread of OC. Discovering the “trigger/s,” its downstream targets, and therapeutic targeting are essential to substantively improve the survival of women with OC. The objective of our study is to evaluate the role of Connective Tissue Growth Factor (CTGF) in EMT in OC. Methods: R182 and R2615 are well-described epithelial OC cell and MR182 and MR2615 are the mesenchymal counterparts. R182/R2615 CTGF knock outs (KO) were derived utilizing a Cas9/CRISPR-Cas9 lentivirus plasmid vector and verified by indel sequencing. Invasion, anoikis resistance, and chemosensitivity assays were performed in wild-type (WT) and KO cells. RNA sequence analysis was performed and analyzed using iPathway guide. Top five upregulated and downregulated genes involved in ECM organization pathway were validated by quantitative PCR (qPCR). Immunofluorescence was performed for F-actin. Results: CTGF was expressed in the epithelial and not in the mesenchymal OC cell lines. Loss of CTGF was associated with anoikis resistance, where KO and WT cells displayed 75% and 10% viability, respectively. KO cells were significantly more invasive than WT cells. Administration of exogeneous CTGF in KO cells decreased invasion in a dose dependent manner. No change was seen in chemosensitivity to Cisplatin in KO cells. RNA seq analysis identified ECM organization as the biologic process most affected by loss of CTGF. Upregulated (FREM2, LAMC2, ITGB4) and downregulated (SPP1, SV2A, RELN, COL6A3, COL4A6) extracellular matrix genes were validated by qPCR. Immunofluorescence staining of F-actin demonstrated increased cytoskeleton expression of F-actin in CTGF KO cells. Conclusion: Our data suggests that CTGF expression maintains the epithelial phenotype in OC. Loss of CTGF may be one of the early triggers of EMT in OC through extracellular matrix remodeling affecting anoikis and adhesion characteristics, thus acquiring a more migratory and invasive phenotype

    Heterogeneity of Microglial Activation in the Innate Immune Response in the Brain

    Get PDF
    The immune response in the brain has been widely investigated and while many studies have focused on the proinflammatory cytotoxic response, the brain’s innate immune system demonstrates significant heterogeneity. Microglia, like other tissue macrophages, participate in repair and resolution processes after infection or injury to restore normal tissue homeostasis. This review examines the mechanisms that lead to reduction of self-toxicity and to repair and restructuring of the damaged extracellular matrix in the brain. Part of the resolution process involves switching macrophage functional activation to include reduction of proinflammatory mediators, increased production and release of anti-inflammatory cytokines, and production of cytoactive factors involved in repair and reconstruction of the damaged brain. Two partially overlapping and complimentary functional macrophage states have been identified and are called alternative activation and acquired deactivation. The immunosuppressive and repair processes of each of these states and how alternative activation and acquired deactivation participate in chronic neuroinflammation in the brain are discussed

    Microglial activation and chronic neurodegeneration

    Get PDF
    Microglia, the resident innate immune cells in the brain, have long been implicated in the pathology of neurode-generative diseases. Accumulating evidence points to activated microglia as a chronic source of multiple neurotoxic factors, including tumor necrosis factor-α, nitric oxide, interleukin-1ÎČ, and reactive oxygen species (ROS), driving progressive neuron damage. Microglia can become chronically activated by either a single stimulus (e.g., lipopolysaccharide or neuron damage) or multiple stimuli exposures to result in cumulative neuronal loss with time. Although the mechanisms driving these phenomena are just beginning to be understood, reactive microgliosis (the microglial response to neuron damage) and ROS have been implicated as key mechanisms of chronic and neurotoxic microglial activation, particularly in the case of Parkinson’s disease. We review the mechanisms of neurotoxicity associated with chronic microglial activation and discuss the role of neuronal death and microglial ROS driving the chronic and toxic microglial phenotype

    We're in this Together: Sensation of the Host Cell Environment by Endosymbiotic Bacteria

    Get PDF
    Bacteria inhabit diverse environments, including the inside of eukaryotic cells. While a bacterial invader may initially act as a parasite or pathogen, a subsequent mutualistic relationship can emerge in which the endosymbiotic bacteria and their host share metabolites. While the environment of the host cell provides improved stability when compared to an extracellular environment, the endosymbiont population must still cope with changing conditions, including variable nutrient concentrations, the host cell cycle, host developmental programs, and host genetic variation. Furthermore, the eukaryotic host can deploy mechanisms actively preventing a bacterial return to a pathogenic state. Many endosymbionts are likely to use two-component systems (TCSs) to sense their surroundings, and expanded genomic studies of endosymbionts should reveal how TCSs may promote bacterial integration with a host cell. We suggest that studying TCS maintenance or loss may be informative about the evolutionary pathway taken toward endosymbiosis, or even toward endosymbiont-to-organelle conversion.Peer reviewe

    Identification and Validation of Novel Cerebrospinal Fluid Biomarkers for Staging Early Alzheimer's Disease

    Get PDF
    Ideally, disease modifying therapies for Alzheimer disease (AD) will be applied during the 'preclinical' stage (pathology present with cognition intact) before severe neuronal damage occurs, or upon recognizing very mild cognitive impairment. Developing and judiciously administering such therapies will require biomarker panels to identify early AD pathology, classify disease stage, monitor pathological progression, and predict cognitive decline. To discover such biomarkers, we measured AD-associated changes in the cerebrospinal fluid (CSF) proteome.CSF samples from individuals with mild AD (Clinical Dementia Rating [CDR] 1) (n = 24) and cognitively normal controls (CDR 0) (n = 24) were subjected to two-dimensional difference-in-gel electrophoresis. Within 119 differentially-abundant gel features, mass spectrometry (LC-MS/MS) identified 47 proteins. For validation, eleven proteins were re-evaluated by enzyme-linked immunosorbent assays (ELISA). Six of these assays (NrCAM, YKL-40, chromogranin A, carnosinase I, transthyretin, cystatin C) distinguished CDR 1 and CDR 0 groups and were subsequently applied (with tau, p-tau181 and AÎČ42 ELISAs) to a larger independent cohort (n = 292) that included individuals with very mild dementia (CDR 0.5). Receiver-operating characteristic curve analyses using stepwise logistic regression yielded optimal biomarker combinations to distinguish CDR 0 from CDR>0 (tau, YKL-40, NrCAM) and CDR 1 from CDR<1 (tau, chromogranin A, carnosinase I) with areas under the curve of 0.90 (0.85-0.94 95% confidence interval [CI]) and 0.88 (0.81-0.94 CI), respectively.Four novel CSF biomarkers for AD (NrCAM, YKL-40, chromogranin A, carnosinase I) can improve the diagnostic accuracy of AÎČ42 and tau. Together, these six markers describe six clinicopathological stages from cognitive normalcy to mild dementia, including stages defined by increased risk of cognitive decline. Such a panel might improve clinical trial efficiency by guiding subject enrollment and monitoring disease progression. Further studies will be required to validate this panel and evaluate its potential for distinguishing AD from other dementing conditions

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Full text link
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 3σ\sigma (5σ\sigma) level, with a 66 (100) kt-MW-yr far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ\sigma level with a 100 kt-MW-yr exposure for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest
    • 

    corecore