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We describe an approach for simulating human game-play in strategy games using a variety of AI techniques, including simulated
annealing, decision tree learning, and case-based reasoning. We have implemented an AI-bot that uses these techniques to form
a novel approach for planning fleet movements and attacks in DEFCON, a nuclear war simulation strategy game released in
2006 by Introversion Software Ltd. The AI-bot retrieves plans from a case-base of recorded games, then uses these to generate
a new plan using a method based on decision tree learning. In addition, we have implemented more sophisticated control over
low-level actions that enable the AI-bot to synchronize bombing runs, and used a simulated annealing approach for assigning
bombing targets to planes and opponent cities to missiles. We describe how our AI-bot operates, and the experimentation we have
performed in order to determine an optimal configuration for it. With this configuration, our AI-bot beats Introversion’s finite
state machine automated player in 76.7% of 150 matches played. We briefly introduce the notion of ability versus enjoyability and
discuss initial results of a survey we conducted with human players.
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1. Introduction

DEFCON is a multiplayer real-time strategy game from
Introversion Software Ltd., for which a screenshot is pro-
vided in Figure 1. Players compete in a nuclear war simula-
tion to score as many points as possible by hitting opponent
cities. The game is divided into stages, beginning with placing
resources (nuclear silos, fleets of ships, airbases, and radar
stations; see Figure 1) within an assigned territory, then
guiding fleet manoeuvres, bombing runs, fighter attacks, and
finally missile strikes.

The existing single-player mode contains a computer
opponent that employs a finite state machine with five states
which are carried out in sequence:

(1) placement of ground units and fleet,

(2) scouting by planes and fleet to uncover structures of
the opponent,

(3) assaults on the opponent with bombers,

(4) a full strike on the opponent with missiles from silos,
submarines, and bombers,

(5) a final state, where fleets of ships approach and attack
random opponent positions.

Once the state machine has reached the fifth state, it remains
in that state for the remainder of the game. This results in a
predictable strategy that may appear monotonous to human
players.

We have designed and implemented a novel two-tiered
bot to play DEFCON: on the bottom layer, there are
enhanced low-level actions that make use of in-match history
and information from recorded games to estimate and pre-
dict opponent behavior and manoeuvre units accordingly.
The information is gathered in influence maps (see also
[1]) and is used in synchronous attacks, a movement desire
model, fleet formation, and target allocation. On top of
these tactical means, we have built a learning system that
is employed for the fundamental long-term strategy of a
match. The operation of this system is multifaceted and
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Figure 1: Screenshot of DEFCON.

relies on a number of AI techniques, including simulated
annealing, decision tree learning, and case-based reasoning.
In particular, the AI-bot maintains a case-base of previously
played games to learn from, as described in Section 2. It uses
a structure placement algorithm to determine where nuclear
silos, airbases, and radars should be deployed. To do this, the
AI-bot retrieves games from the case-base, ranks them using
a weighted sum of various attributes (including life span and
effectiveness) of the silos, airbases and radars in the previous
game, and then uses the ranking to determine placement of
these resources in the game being played, as described in
Section 3.

Our AI-bot also controls naval resources, organized into
fleets and metafleets (i.e., groups of fleets). Because these
resources move during the game, the AI-bot uses a high-
level plan to dictate the initial placement and metafleet
movement/attack strategies. To generate a bespoke plan to fit
the game being played, the AI-bot again retrieves cases from
the case-base, and produces a plan by extracting pertinent
information from retrieved plans via decision tree learning,
as described in Section 4.

During the game, the AI-bot carries out the metafleet
movement and attack plan using a movement desire model
which takes its context (including the targets assigned
to ships and opponent threats) into account. The AI-
bot also controls low-level actions at game-time, such
as the launching of plane bombing runs, attempting to
destroy incoming missiles, and launching missile attacks
from fleets. As described in Section 5, we implemented
various more sophisticated controls over these low-level
actions. In particular, we enabled our AI-bot to synchronize
the timing of planes when they attack opponent silos. We
also implemented a simulated annealing approach to solve
the problem of assigning bombing targets to planes and
opponent cities to missiles.

We have performed much experimentation to fine-
tune our AI-bot in order to maximize the proportion of
games it wins against Introversion’s own player simulator. In
particular, in order to determine the weights in the fitness
function for the placement of silos and airbases, we have
calculated the correlation of various resource attributes with
the final score of the matches. We have also experimented
with the parameters of the simulated annealing search for
assignments. Finally, we have experimented with the size of
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Figure 2: Overview of the system design.

the case-base to determine if/when overfitting occurs. With
the most favorable setup, in a session of 150 games, our AI-
bot won 76.7% of the time. We describe our experimentation
in Section 6.

The superiority of our AI-bot leads to the question of
whether higher ability implies higher enjoyability for human
players. To this end, we have proposed a hypothesis and
conducted an initial survey, which we describe in Section 7.
In Sections 8 and 9, we conclude with related work and some
indication of future work.

2. Learning from Previous Games

2.1. Learning Cycle Overview. The design of the learning bot
is based on an iterative optimization process, similar to that
of a typical evolutionary-based process. An overview of the
cycle is depicted in Figure 2.

Given a situation requesting a plan, a case-base of
previous plan—game pairs is used to select matching plans
according to a similarity measure described in the next sub-
section. This subset of plans is then used in a generalization
process to create a decision tree, where each node contains
an atomic plan item, as described in Section 4.1. The new
plan is generated as a path in the decision tree, derived by
starting at the root node and then descending to a leaf node
by choosing each branch through a fitness-proportionate
selection. The fitness function for the quality of this plan is
the game itself, where the AI-bot plays according to the plan,
described in Sections 3, 4, and 5. Together with the plan itself,
the obtained game data and outcome form a new case. As
the decision tree learning requires both positive and negative
examples, the new case is retained regardless of the actual
outcome of the match.

2.2. A Case-Base of Plans. We treat the training of our AI-
bot as a machine learning problem in the sense of [2], where
an agent learns to perform better at a task through increased
exposure to the task. To this end, the AI-bot is able to store
previously played games in a case-base, and retrieve games in
order to play its current match more effectively. After a game
is played, the AI-bot records the following information as an
XML data-point in the case-base:
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Figure 3: Launched opponent missiles during a match, showing
wave-pattern of attacks. The time shown is in-game time.

(i) the starting positions of the airbases, radar stations,
fleets, and nuclear silos for both players;

(ii) the metafleet movement and attack plan which was
used (as described in Section 4);

(iii) performance statistics for deployed resources which
are for nuclear silos the number of missiles attacked
and destroyed and planes shot down by each silo, for
radar stations the number of missiles identified, and
for airbases the number of planes launched and the
number of planes which were quickly lost;

(iv) an abstraction of the opponent attacks which took
place; we abstract these into waves, by clustering
using time-frames of 500 seconds and a threshold of 5
missiles fired (these settings were determined empir-
ically, see Figure 3 for a typical attack distribution);

(v) routes taken by opponent fleets;

(vi) the final scores of the two players in the game.

Cases are retrieved from the case-base using the starting
configuration of the game. There are 6 territories that players
can be assigned to (North America, Europe, South Asia, etc.),
hence there are 6P2 = 30 possible territory assignments in a
two-player game, which we call the starting configuration of
the game. This has a large effect on the game, so only cases
with the same starting configuration as the current game
are retrieved. For the rest of the paper, we assume that a
suitable case-base is available for our AI-bot to use before and
during the game. How we populate this case-base is described
in Section 6. Cases are retrieved from the case-base both at
the start of a game—in order to generate a game plan, as
described in Section 4.3—and during the game, in order to
predict the fleet movements of the opponent. At the start of
a game, cases are retrieved using only the starting territory
assignments of the two players.

3. Placement of Silos, Airbases, and Radars

Airbases are structures from which bombing runs are
launched; silos are structures which launch nuclear missiles
at opponent cities and defend the player’s own cities against
opponent missile strikes and planes; and radar stations are
able to identify the position of enemy planes, missiles, and
ships within a certain range. As such, all these structures are
very important, and because they cannot be moved at game
time, their initial placement by the AI-bot at the start of the
game is a key to a successful outcome. The AI-bot uses the
previously played games to calculate airbase, silo, and radar
placement for the current game. To do this, it retrieves cases
with the same starting configuration as the current game,
as described above. For each retrieved game, it analyzes the
statistics of how each airbase, silo, and radar performed.

Each silo is given an effectiveness score as a weighted sum
of the normalized values for the following:

(a) the number of enemy missiles it shot at;

(b) the number of enemy missiles it shot down;

(c) the number of enemy planes it shot down;

(d) the time it survived before being destroyed.

With respect to the placement of silos, each case is ranked
using the sum of the effectiveness of its silos. Silo placement
from the most effective case is then copied for the current
game. The same calculations inform the placement of the
radar stations, with the effectiveness given by the following
values:

(a) the number of enemy planes detected;

(b) the number of enemy planes detected before other
radars;

(c) the number of enemy ships detected;

(d) the time it survived before being destroyed.

Finally, the placement of airbases is determined with
these effectiveness values:

(a) the number of planes launched;

(b) the number of units destroyed by launched planes;

(c) the time it survived before being destroyed.

To find suitable weights in the weighted sum for
effectiveness, we performed a correlation analysis for the
retaining/losing of resources against the overall game score.
This analysis was performed using 1500 games played
randomly (see Section 4.3 for a description of how randomly
played games were generated). In Figure 4, we present the
Pearson product-moment correlation coefficient for each of
the AI-bot’s own resources.

We note that—somewhat counter-intuitively—the loss
of carriers, airbases, bombers, fighters, battleships, and
missiles is correlated with a winning game. This is explained
by the fact that games where fewer of these resources were
lost will have been games where the AI-bot did not attack
enough (when attacks are made, resources are inevitably
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Figure 5: Two fleets attacking each other in DEFCON.

lost). For our purposes, it is interesting that the retention of
silos is highly correlated with winning games. This informed
our choice of weights in the calculation of effectiveness for
silo placement: we weighted value (d), namely, the time a
silo survived, higher than values (a), (b), and (c). In practice,
for silos, we use 1/10, 1/3, 1/6, and 2/5 as weights for values
(a), (b), (c), and (d), respectively. We used similar correlation
analyses to determine how best to calculate the effectiveness
of the placement of airbases and radar stations.

4. Planning Ship Movements

An important aspect of playing DEFCON is the careful
control of naval resources (submarines, battleships, and
aircraft carriers). We describe here how our AI-bot generates
a high-level plan for ship placement, movement, and attacks
at the start of the game, how it carries out such plans (see
Figure 5 for a sea attack), and how plans are automatically
generated.

4.1. Plan Representation. It is useful to group resources into
larger units so that their movements and attacks can be
synchronized. DEFCON already allows collections of ships
to be moved as a fleet, but players must target and fire
each ship’s missiles independently. To enhance this, we have
introduced the notion of a metafleet which is a collection
of a number of fleets of ships. Our AI-bot will typically
have a small number of metafleets, (usually 1 or 2) with

each one independently targeting an area of high opponent
population. The metafleet movement and attack plans
describe a strategy for each metafleet as a subplan, where
the strategy consists of two large-scale movements of the
metafleet. Each subplan specifies the following information.

(1) In what general area (sea territory) the ships in the
metafleet should be initially placed, relative to the
expected opponent fleet positions.

(2) What the aim of the first large-scale movement
should be, including where (if anywhere) the
metafleet should move to, how it should move there,
and what general target area the ships should attack,
if any.

(3) When the metafleet should switch to the second
large-scale movement.

(4) What the aim of the second large-scale movement
should be, including the same details as for (2).

4.2. Carrying out Metafleet Movements at Game-Time. Sea
territories—assigned by DEFCON at the start of a game—
are split into two oceans, and the plan dictates which one
each metafleet should be placed in. The exact positions of
the metafleet members are calculated at the start of the
game using the case-base, that is, given the set of games
retrieved, the AI-bot determines which sea territory contains
on average most of the opponent’s fleets. Within the chosen
sea territory, the starting position depends on the aim of
the first large-scale movement and an estimation of the
likelihood of opponent fleet encounter which is calculated
using the retrieved games. This estimation uses the fleet
movement information associated with each stored game in
the case-base. The stored information allows the retrieval of
the position of each fleet from the stored game as a function
of time. For any given position, the closest distance from that
position which each fleet obtains during the game can be
calculated. The likelihood of enemy fleet encounter is then
estimated by the fraction of games in which enemy fleets get
closer to the observed position than a predefined threshold.

There are five aims for the large-scale movements,
namely,

(a) to stay where they are and await the opponent’s fleets
in order to engage them later,

(b) to move in order to avoid the opponent’s fleets,

(c) to move directly to the target of the attack,

(d) to move to the target avoiding the opponent’s fleet,

(e) to move towards the opponent’s fleet in order to
intercept and engage them.

The aim determines whether the AI-bot should place
the fleets at (i) positions with high-opponent encounter
likelihoods (in which case, large-scale movements (a) and (e)
are undertaken), (ii) positions with low-opponent encounter
likelihoods (in which case, large-scale movements (b) and
(d) are undertaken), or (iii) positions which are as close
to the attack spot as possible (in which case, large-scale
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Figure 6: Fleet formation in DEFCON with front direction shown.
Each circle indicates a separate fleet of up to three ships.

movement (c) is undertaken). To determine a general area
of the opponent’s territory to attack (and hence to guide a
metafleet towards), our AI-bot constructs an influence map
[1] built using opponent city population statistics. It uses
the map to determine the centers of the highest population
density, and assigns these to the metafleets.

We implemented a central mechanism to determine both
the best formation of a set of fleets into a metafleet, and
the direction of travel of the metafleet given the aims of
the large-scale movement currently being executed. During
noncombative game-play, the central mechanism guides the
metafleets towards the positions dictated in the plan (see
Figure 6), but this does not take into account the opponent’s
positions.

Hence, we also implemented a movement desire model to
take over from the default central mechanism when an attack
on the metafleet is detected. This determines the direction for
each ship in a fleet using (a) proximity to the ship’s target
if this has been specified (b) distance to any threatening
opponent ships, and (c) distance to any general opponent
targets. A direction vector for each ship is calculated in light
of the overall aim of the large-scale metafleet movement. For
instance, if the aim is to engage the opponent, the ship will
sail in the direction of the opponent’s fleets.

The movement desire model relies on being able to
predict where the opponent’s fleets will be at certain times in
the future. To estimate these positions, our AI-bot retrieves
cases from the case-base at game-time, and looks at all the
various positions the opponent’s fleets were recorded at in
the case. It then ranks these positions in terms of how close
they are to the current positions of the opponent’s fleets. To
do this, it must assign each current opponent ship to one of
the ships in the recorded game in such a way that the overall
distance between the pairs of ships in the assignment is as low
as possible. As this is a combinatorially expensive task, the
AI-bot uses a simulated annealing approach to find a good
solution, which is described in more detail in Section 5. Once
assignments have been made, the five cases with the closest
assignments are examined and the fleet positions at specific
times in the chosen retrieved games are projected onto the
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Figure 7: Full selected path through the decision tree. Chosen
path is highlighted in bold, not chosen branches are truncated.
Remaining plan items are filled in randomly, in this case this is
second large-scale movement, first attack time, and number of
carriers in metafleet.

current game to predict the future position of the opponent’s
fleets. The five cases are treated as equally likely, thus fleets
react to the closest predicted fleet positions according to the
aim of their large-scale movement, for instance, approach or
avoid it.

4.3. Automatically Generating Plans. As mentioned above,
at the start of a game, the starting configuration is used to
retrieve a set of cases. These are then used to generate a
bespoke plan for the current game as follows. Firstly, each
case contains the final score information of the game that
was played. These are ranked according to the AI-bot’s score
(which will be positive if it won, and negative if it lost).
Within this ranking, the first half of the retrieved games
are labeled as negative, and the second half are labeled as
positive. Hence, sometimes, winning games may be labeled
negative and, at other times, losing games may be labeled
positive. This is done to achieve an example set that generates
a more detailed decision tree using the ID3 algorithm, as
described below.

These positive and negative examples are used to derive
a decision tree which can predict whether a plan will lead
to a positive or a negative game. The attributes of the
plan in the cases are used as attributes to split over in the
decision tree, that is, the number of metafleets, their starting
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sea territories, their first and second large-scale movement
aims, and so on. Our AI-bot uses the ID3 algorithm [2]
to learn the decision tree. This algorithm builds a decision
tree by iteratively choosing the attribute with the highest
information gain (i.e., the amount of noise reduction when
splitting the dataset according to the attribute) to split the
data. ID3 is a greedy algorithm that grows the decision tree
top-down until all attributes have been used or all examples
are perfectly classified. By maximizing the entropy, that is,
making sure that there are roughly the same number of
negative and positive examples, ID3 generates a deeper tree,
because it takes more steps to perfectly classify the data. As we
see below, this is beneficial, as each path in the tree represents
a partial plan, with longer paths dictating more specific plans.

We portray the top nodes of an example tree in Figure 7.
In this example, we see that the most important factor for
distinguishing positive and negative games is the starting sea
territory for metafleet 1 (which can be in either low, mid,
or high enemy threat areas). Next, the decision tree uses the
aim of the second large-scale metafleet movement, the attack
time, and the number of battleships in metafleet 1.

Each branch from the top node to a leaf node in these
decision trees represents a partial plan, as it will specify the
values for some—but not necessarily all—of the attributes
which make up a plan. The AI-bot chooses one of these
branches by using an iterative fitness-proportionate method,
that is, it chooses a path down the tree by looking at the
subtree below each possible choice of value from the node it
is currently looking at. Each subtree has a set of positive leaf
nodes, and a set of negative leaf nodes, and the subtree with
the highest proportion of positive leaf nodes is chosen (with
a random choice between equally high-scoring subtrees).
This continues until a leaf node is reached. Having chosen
a branch in this way, the AI-bot fills in the other attributes
of the plan randomly. The number of randomly assigned
attributes depends on the size of the case-base, for 35 cases
this is about 3 attributes.

5. Synchronizing Attacks

In order for players not to have to micromanage the playing
of the game, DEFCON automatically performs certain
actions. For instance, air defence silos automatically target
planes in attack range, and a battleship will automatically
attack hostile ships and planes in its range. Players are
expected to control where their planes attack, and where
missiles are fired (from submarines, bombers, and silos).

5.1. Attacks as Assignment Problems. As mentioned above,
the AI-bot uses an influence map to determine the most
effective general radius for missile attacks from its silos,
submarines, and bombers. Within this radius, it must assign
a target to each missile. This is a combinatorially difficult
problem, so we frame it as an instance of the assignment
problem [3], and our AI-bot searches for an injective
mapping between the set of missiles and the set of cities
using a simulated annealing heuristic search. To do this,
it calculates the fitness of each mapping as the overall

Figure 8: Synchronized attack in DEFCON.

population of the cities mapped onto, and starts with a
random mapping. Using two parameters, namely the starting
temperature S and the cool-down rate c, a pair of missiles
is chosen randomly, and the cities they are assigned to
are swapped. The new mapping is kept only if the fitness
decreases by no more than S times the current fitness. When
each missile has been used in at least one swap, S is multiplied
by c and the process continues until S reaches a cut-off value.

For most of our testing, we used values S = 0.5, c = 0.9,
and a cut-off value of 0.04, as these were found to be effective
through some initial testing. We also experimented with
these values, as described in Section 6. Note that the mapping
of planes to airbases for landing is a similar assignment
problem, and we use a simulated annealing search process
with the same S and c values for this.

Only silos can defend against missiles, and silos require
a certain time to destroy each missile. Thus attacks are more
efficient when the time frame of missile strikes is kept small,
so we enabled our AI-bot to organize planes to arrive at a
target location at the same time.

To achieve such a synchronized attack, our AI-bot makes
individual planes take detours so that they arrive at the time
that the furthest of them arrives without detour (see Figure 8
for an example of a synchronized attack using this method).
Basic trigonometry gives two possible detour routes and our
AI-bot uses the influence map to choose the route which
avoids enemy territory the most.

6. Experimentation

We tested the hypothesis that our AI-bot can learn to
play DEFCON better by playing games randomly, then
storing the games in the case-base for use as described
above. To this end, for experiment 1, we generated 5 games
per starting configuration (hence 150 games in total), by
randomly choosing values for the plan attributes, then using
the AI-bot to play against Introversion’s own automated
player. Moreover, whenever our AI-bot would ordinarily use
retrieved cases from the case-base, uninformed (random)
decisions were made for the fleet movement method, and the
placement algorithm provided by Introversion was used. The
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Table 1: Performance versus simulated annealing parameters.

S c Games won (%) Mean score differential

0 0 53.3 13.3

0.3 0.75 73.3 22.7

0.5 0.9 76.7 33.2

01.01.00 0.95 69.0 34.9

01.01.00 0.99 73.3 33.0

five games were then stored in the case-base. Following this
populating of the case-base, we enabled the AI-bot to retrieve
and use the cases to play against Introversion’s player 150
times, and we recorded the percentage of games our AI-bot
won. We then repeated the experiment with 10, rather than 5
randomly played games per starting configuration, then with
15, and so on, up to 70 games, with the results portrayed in
Figure 9.

We see that the optimal number of cases to use in
the case-base is 35, and that our AI-bot was able to beat
Introversion’s player in 76.7% of the games. We analyzed
games with 35 cases and games with 40 cases to attempt to
explain why performance degrades after this point, and we
found that the decision tree learning process was more often
using idiosyncracies from the cases in the larger case-base,
hence overfitting. We describe some possible remedies for
overfitting in Section 8.

Using the 35 cases optimum, we further experimented
with the starting temperature and cool-down rate of the
simulated annealing search for mappings. As described in
Section 5, our AI-bot uses the same annealing settings for all
assignment problems, and we varied these from no annealing
(S = c = 0) to very high annealing (S = 1.0, c = 0.99).
As portrayed in Table 1, we recorded both the proportion
of wins in 150 games and the score differential between the
players. We see that our initial settings of S = 0.5, c = 0.9
achieved the highest proportion of wins, whereas the setting
S = 1.0, c = 0.95 wins fewer games, but does so more
convincingly.
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In a final set of experiments, we tried various different
metafleet planning setups to estimate the value of learning
from played games. We found that with random generation
of plans, our AI-bot won 50% of the time, and that by using
hand-crafted plans developed using knowledge of playing
DEFCON, we could increase this value to 63%. However, this
was not as successful as our case-based learning approach,
which—as previously mentioned—won 76.7% of games.
This gives us confidence to try different learning methods,
such as getting our AI-bot to play against itself, which we aim
to experiment with in future work.

7. Discussion

We achieved the initial goal of building an AI-bot that
can consistently beat the one written by Introversion and
included with the DEFCON distribution. Its capability to
learn and improve from previous experience makes it more
competitive, and thus we can assign a higher ability to our
bot. This observation leads us to the question of whether
increased ability of a computer opponent translates into
increased enjoyability for human players.

7.1. Ability versus Enjoyability. We define enjoyability in the
context of computer games as the desire to play again after
a match, that is, the number of games a user wants to play
before he/she gets bored or frustrated and thus stops enjoying
the game. We hypothesize that there is a correlation between
ability and enjoyability.

In Figure 10, we portray a hypothetical graph with the
ability of the bot (in terms of the percentage of games won
against an opponent) plotted against the desire to play again
(in terms of the number of games played before the player
gets bored). Bots with a fixed strength are therefore points on
the ability-axis, indicated by the dotted vertical lines. If our
hypothesis is valid, a function similar to the blue graph might
emerge. The rationale behind this is that too low or too high
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bot ability will bore or frustrate the player and negatively
affect his/her desire to play again. The maximum of this
function is the ability of a bot that optimizes the enjoyability
of playing against it.

Figure 11 shows a hypothetical progression of enjoyabil-
ity (as a qualitative measure; the player is asked to rate his
desire to play again after each match) over time (i.e., over the
number of games played against a bot). As the Introversion
bot is fairly predictable, we would expect the player to get
bored of it after he/she learns how to defeat it quite quickly,
indicated by a sharp drop of enjoyability. An alternative,
more challenging bot might start with a lower enjoyability
as it seems too hard to beat. However, the player’s desire to
play again should then rise as he/she gets better and learns
how to win against the alternative bot. The raised difficulty
is expected to delay the drop in enjoyability as it takes longer
to consistently win against the bot. We indicate in Figure 11
the idea of a shelf event, that is, a user getting so upset (e.g.,
through frustration or boredom) with a game that he stops
playing it and puts it on his shelf forever. This event can
be associated with a very low desire to play again and is
indicated as a line in the graph.

7.2. Player Survey. To approach the question of enjoyability
versus ability in strategy games, we conducted a pilot survey
with students, none of which had played DEFCON before.
The sample size of 10 is too small to yield statistically
significant results, but it provided valuable responses for
further improvement of our AI-bot and helped us to remedy
inaccuracies in the test protocol. The test was carried out
as a blind test, that is, half the subjects played against the
original AI-bot and the other half against our AI-bot. All
other game parameters such as starting territories and game
mode were identical. After each of the 10 successive matches
against their computer opponent, the players were asked to
rate their enjoyment, frustration, difficulty, desire to play
again and confidence of winning the next match. The results
are portrayed in Figure 12.

The results indicate that the novices were overburdened
with the increased strength of the new AI-bot, as they won
39% of the games against our AI-bot, while the test group

Frustration∗

Enjoyability∗

Challenging∗

Desire to play again∗

Confidence of winning

next match∗

Total wins against

bot (in 10)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Old AI-bot
New AI-bot

Figure 12: Results of the conducted survey, averaged over 10 games.
Values marked with an asterix range from 1 = very low to 6 = very
high.
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Figure 13: Comparison of survey results on the desire to play again
(range from 1 = very low to 6 = very high) after each played game.
Introversions bot is shown in red, while the new bot is shown in
black.

won 56% of the games against the original DEFCON bot.
This was reflected in the answers of the questionnaire, where
the people playing the original bot were less frustrated
(Figure 14) and more confident of winning (Figure 15),
which resulted in an often higher desire to play again; see
Figure 13. Also, we found that the choice of the starting
configuration had a very strong impact on the perceived
difficulty of the bots. For instance, in the test games, no player
won as Europe against the AI-bot playing South America.
On the other hand, the bots always lost playing North Asia
against Europe. Therefore, great care has to be taken when
choosing starting configurations for subsequent surveys.
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Regarding our initial hypothesis from Section 7.1, we
cannot draw any conclusive results yet, as the sample size and
the time-span (i.e., number of games played in the survey)
were too small to establish trends. This requires further
testing and a survey with a bigger sample size, as described
in Section 9. However, our initial survey does indicate
that—at least for DEFCON—enjoyability and ability are
not correlated in a simple positive manner, which is an
interesting finding.

8. Related Work

The use of case-based reasoning, planning, and other AI
techniques for board games is too extensive to cover, hence
it is beyond the scope of this paper. Randall et al. have
used DEFCON as a test-bed for AI techniques, in particular
learning ship fleet formations [4]. Case-based reasoning has
been used in [5] for plan recognition in order to predict
a player’s actions when playing the Space Invaders game.
They used a simplified planning language which did not need
preconditions and applied plan recognition to abstract state-
action pairs. Using a plan library derived from games played
by others, they achieved good predictive accuracy. In the real-
time strategy game Wargus, a dynamic scripting approach
was shown to outperform hand-crafted plans, as described
in [6]. Moreover, hierarchical planning was tested in an
Unreal Tournament environment by [7], who showed that
this method had a clear advantage over finite state machines.

A comparison of artificial neural networks and evolu-
tionary algorithms for optimally controlling a motocross
bike in a video game was investigated in [8]. Both methods
were used to create riders which were compared with
regard to their speed and originality. They found that the
neural network found a faster solution but required hand
crafted training data, while the evolutionary solution was
slower, but found solutions that had not been found by
humans previously. In commercial games, scripting and/or
reactive behaviors have in general been sufficient to simulate
planning, as full planning can be computationally expensive.
However, the Dark Reign game from Activision uses a form
of finite state machines that involves planning [9], and the
first-person shooter game F.E.A.R employs goal-oriented
action planning [10].

8.1. Other Applications. Although the developed bot is
in itself already an application of the used techniques,
the underlying concept of combining artificial intelligence
methods to benefit from synergy effects is applicable to
many problems, including, but not restricted to, other
strategy computer games that have similar requirements of
optimizing and planning actions to be able to compete with
skilled humans.

In particular, the combination of case-bases and decision
trees to retrieve, generalize, and generate plans is a promising
approach that is applicable to a wide range of problems that
exhibit the following properties.

(i) Discrete attributes. The problem state space must be
discrete or discretizable. This is required for decision
tree algorithms to build trees. Attributes with a
low cardinality are preferable, as a high number of
possible values can cause problems with the decision
tree learning algorithm.

(ii) Recognizable opponent states. Problem instances must
be comparable through a similarity measure, which
is required for retrieving cases. In a game domain, it
should be based on opponent attributes or behavior
to allow an adaptation to take place.
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(iii) Static problem domain. The interpretation of a plan
has to be constant, or else the similarity measure
might retrieve irrelevant cases that show similarity to
an obsolete interpretation. This also means that, for
a hierarchical planner, lower-level plans should not
change much when reasoning on high-level plans, as
the case-base is biased towards previously successful
plans.

(iv) Availability of training sets. The problem has to be
repeatable or past instances of problem-solution pairs
have to be available to train the case-base.

8.2. Future Work. There are many ways in which we can fur-
ther improve the performance of our AI-bot. In particular,
we aim to lessen the impact of over-fitting when learning
plans, by implementing different decision tree learning skills,
filling in missing plan details in nonrandom ways, and by
trying other logic-based machine learning methods, such as
Inductive Logic Programming [11]. We also hope to identify
some markers for success during a game, in order to apply
techniques based on reinforcement learning. There are also a
number of improvements we intend to make to the control
of low-level actions, such as more sophisticated detours that
planes make to synchronize attacks.

With improved skills to both beat and engage players,
the question of how to enable the AI-bot to play in a
multiplayer environment can be addressed. This represents
a significant challenge, as our AI-bot will need to collaborate
with other players by forming alliances, which will require
opponent modelling techniques. We aim to use DEFCON
and similar video games to test various combinations of
AI techniques, as we believe that integrating reasoning
methods has great potential for building intelligent sys-
tems. To support this goal, we are developing an open
AI interface for DEFCON, which is available online at
http://www.introversion.co.uk/defcon/bots/.

The initial results of the survey and the discussion of
ability versus enjoyability raise another important point for
the future direction of our research. Usually it is a practice in
academic AI research to strive for an algorithm that plays at
maximum strength, that is, it tries to win at all costs. This
is apparent in the application of AI techniques to playing
board games. Chess playing programs, for example, usually
try to optimize their probabilities of winning. However, this
behavior may be undesirable for opponents in modern video
games. It is not the goal of the game to make the player lose
as often as possible, but to make him/her enjoy the game.
This may involve opponents that act nonoptimally, fall for
traps, and make believable mistakes. This behavior is another
aspect we hope to improve in our bot in the future. It also
suggests further player studies, as it is imperative to evaluate
the enjoyability and believability of a bot through player
feedback.

9. Conclusion

We have implemented an AI-bot to play the commercial
game DEFCON, and showed that it outperforms the existing

automated player. In addition to fine-grained control over
game actions, including the synchronization of attacks,
intelligent assignment of targets via a simulated annealing
search, and the use of influence maps, our AI-bot uses plans
to determine large-scale fleet movements. It uses a case-base
of randomly-planned previously played games to find similar
games, some of which ended in success while others ended
in failure. It then identifies the factors which best separate
good and bad games by building a decision tree using ID3.
The plan for the current game is then derived using a fitness-
proportionate traversal of the decision tree to find a branch
which acts as a partial plan, and the missing parts are filled
in randomly. To carry out the fleet movements, ships are
guided by a central mechanism, but this is superceded by a
movement-desire model if a threat to the fleet is detected.
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