190 research outputs found
Recommended from our members
Comparison of simulants to actual neutralized current acid waste: process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ
A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs were established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste was performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property ,models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions
Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46162/1/205_2004_Article_BF00380256.pd
Variable exponent Besov-Morrey spaces
In this paper we introduce Besov-Morrey spaces with all indices variable and study some fundamental properties. This includes a description in terms of Peetre maximal functions and atomic and molecular decompositions. This new scale of non-standard function spaces requires the introduction of variable exponent mixed Morrey-sequence spaces, which in turn are defined within the framework of semimodular spaces. In particular, we obtain a convolution inequality involving special radial kernels, which proves to be a key tool in this work.publishe
Multidimensional Conservation Laws: Overview, Problems, and Perspective
Some of recent important developments are overviewed, several longstanding
open problems are discussed, and a perspective is presented for the
mathematical theory of multidimensional conservation laws. Some basic features
and phenomena of multidimensional hyperbolic conservation laws are revealed,
and some samples of multidimensional systems/models and related important
problems are presented and analyzed with emphasis on the prototypes that have
been solved or may be expected to be solved rigorously at least for some cases.
In particular, multidimensional steady supersonic problems and transonic
problems, shock reflection-diffraction problems, and related effective
nonlinear approaches are analyzed. A theory of divergence-measure vector fields
and related analytical frameworks for the analysis of entropy solutions are
discussed.Comment: 43 pages, 3 figure
Transcriptomic profile of host response in Japanese encephalitis virus infection
<p>Abstract</p> <p>Background</p> <p>Japanese encephalitis (JE) is one of the leading causes of acute encephalopathy with the highest mortality rate of 30-50%. The purpose of this study was to understand complex biological processes of host response during the progression of the disease. Virus was subcutaneously administered in mice and brain was used for whole genome expression profiling by cDNA microarray.</p> <p>Results</p> <p>The comparison between viral replication efficiency and disease progression confirms the active role of host response in immunopathology and disease severity. The histopathological analysis confirms the severe damage in the brain in a time dependent manner. Interestingly, the transcription profile reveals significant and differential expression of various pattern recognition receptors, chemotactic genes and the activation of inflammasome. The increased leukocyte infiltration and aggravated CNS inflammation may be the cause of disease severity.</p> <p>Conclusion</p> <p>This is the first report that provides a detailed picture of the host transcriptional response in a natural route of exposure and opens up new avenues for potential therapeutic and prophylactic strategies against Japanese encephalitis virus.</p
The masterpieces of John Forbes Nash Jr.
In this set of notes I follow Nashβs four groundbreaking works on real algebraic manifolds, on isometric embeddings of Riemannian manifolds and on the continuity of solutions to parabolic equations. My aim has been to stay as close as possible to Nashβs original arguments, but at the same time present them with a more modern language and notation. Occasionally I have also provided detailed proofs of the points that Nash leaves to the reader
Local Hardy Spaces of Musielak-Orlicz Type and Their Applications
Let \phi: \mathbb{R}^n\times[0,\fz)\rightarrow[0,\fz) be a function such
that is an Orlicz function and (the class of local weights
introduced by V. S. Rychkov). In this paper, the authors introduce a local
Hardy space of Musielak-Orlicz type by the local grand
maximal function, and a local -type space
which is further proved to be the
dual space of . As an application, the authors prove
that the class of pointwise multipliers for the local
-type space ,
characterized by E. Nakai and K. Yabuta, is just the dual of
L^1(\rn)+h_{\Phi_0}(\mathbb{R}^n), where is an increasing function on
satisfying some additional growth conditions and a
Musielak-Orlicz function induced by . Characterizations of
, including the atoms, the local vertical and the local
nontangential maximal functions, are presented. Using the atomic
characterization, the authors prove the existence of finite atomic
decompositions achieving the norm in some dense subspaces of
, from which, the authors further deduce some
criterions for the boundedness on of some sublinear
operators. Finally, the authors show that the local Riesz transforms and some
pseudo-differential operators are bounded on .Comment: Sci. China Math. (to appear
The Development of Therapeutic Antibodies That Neutralize Homologous and Heterologous Genotypes of Dengue Virus Type 1
Antibody protection against flaviviruses is associated with the development of neutralizing antibodies against the viral envelope (E) protein. Prior studies with West Nile virus (WNV) identified therapeutic mouse and human monoclonal antibodies (MAbs) that recognized epitopes on domain III (DIII) of the E protein. To identify an analogous panel of neutralizing antibodies against DENV type-1 (DENV-1), we immunized mice with a genotype 2 strain of DENV-1 virus and generated 79 new MAbs, 16 of which strongly inhibited infection by the homologous virus and localized to DIII. Surprisingly, only two MAbs, DENV1-E105 and DENV1-E106, retained strong binding and neutralizing activity against all five DENV-1 genotypes. In an immunocompromised mouse model of infection, DENV1-E105 and DENV1-E106 exhibited therapeutic activity even when administered as a single dose four days after inoculation with a heterologous genotype 4 strain of DENV-1. Using epitope mapping and X-ray crystallographic analyses, we localized the neutralizing determinants for the strongly inhibitory MAbs to distinct regions on DIII. Interestingly, sequence variation in DIII alone failed to explain disparities in neutralizing potential of MAbs among different genotypes. Overall, our experiments define a complex structural epitope on DIII of DENV-1 that can be recognized by protective antibodies with therapeutic potential
A Broadly Flavivirus Cross-Neutralizing Monoclonal Antibody that Recognizes a Novel Epitope within the Fusion Loop of E Protein
Flaviviruses are a group of human pathogenic, enveloped RNA viruses that includes dengue (DENV), yellow fever (YFV), West Nile (WNV), and Japanese encephalitis (JEV) viruses. Cross-reactive antibodies against Flavivirus have been described, but most of them are generally weakly neutralizing. In this study, a novel monoclonal antibody, designated mAb 2A10G6, was determined to have broad cross-reactivity with DENV 1β4, YFV, WNV, JEV, and TBEV. Phage-display biopanning and structure modeling mapped 2A10G6 to a new epitope within the highly conserved flavivirus fusion loop peptide, the 98DRXW101 motif. Moreover, in vitro and in vivo experiments demonstrated that 2A10G6 potently neutralizes DENV 1β4, YFV, and WNV and confers protection from lethal challenge with DENV 1β4 and WNV in murine model. Furthermore, functional studies revealed that 2A10G6 blocks infection at a step after viral attachment. These results define a novel broadly flavivirus cross-reactive mAb with highly neutralizing activity that can be further developed as a therapeutic agent against severe flavivirus infections in humans
- β¦