108 research outputs found

    CIRED Workshop -Lisbon

    Get PDF
    ABSTRACT Introduction of DG units in the network will result in increasing fault current levels. In this contribution several solutions are described to limit the fault currents in the network, in order to avoid overloading and destruction of components in the networks. The main focus of the paper is on the application of fault current limiters

    NEW NETWORK DESIGN STANDARDS FOR THE GRID CONNECTION OF LARGE CONCENTRATIONS OF DISTRIBUTED GENERATION

    Get PDF
    ABSTRACT Connecting large concentrations of Distributed Generation to the distribution networks usually requires high investments in network extension. This contribution describes how Enexis used its Risk Based Asset Management approach to develop new network design standards for the grid connection of large concentrations of DG in a cost-effective way

    Towards Congestion Management in Distribution Networks:a Dutch Case Study on Increasing Heat Pump Hosting Capacity

    Get PDF
    The current high gas prices motivate end-users to replace their gas heating with electric heat pumps. This will likely cause frequent congestion issues in low-voltage (LV) distribution grids and slow down the heat pump adoption rate. To avoid or defer the expensive and complicated grid expansion, this study shares a solution approach of a Dutch Distribution System Operator (DSO) to enable the increasing adoption of heat pumps in existing dense housing areas. Data of the DSO and a local housing company have been combined to investigate the heat pump hosting capacity on a dense urban LV feeder, including realistic data of grid topology, load and heat dynamics, and practical operating characteristics of heat pumps. Our simulation compares two control strategies: (1) individual peak shaving and (2) central optimal power flow control. We show the central optimal power flow control with end-users' thermal comfort constraints and an objective function of minimizing losses can smoothen total grid loading and lead to flat voltage profiles. This allows the approach to be robust against baseload forecast errors, while the individual peak shaving is more prone to such errors. Moreover, by simulating the strategies on the worst-case scenarios where heat pumps are allocated to end-users at the end of the feeder, we determine the individual peak shaving strategy can slightly increase the heat pump hosting capacity from 49% where no control is imposed to 51%, while the central optimal power flow control allows 100% heat pump connections without causing grid congestion. Finally, recommendations to increase the heat pump hosting capacity are given based on simulation results

    Practice-Oriented Optimization of Distribution Network Planning Using Metaheuristic Algorithms

    Get PDF
    Distribution network operators require more advanced planning tools to deal with the challenges of future network planning. An appropriate planning and optimization tool can identify which option for network extension should be selected from available alternatives. However, many optimization approaches described in the literature are quite theoretical and do not yield results that are practically relevant and feasible. In this paper, a distribution network planning approach is proposed which meets requirements originating from network planning practice to guarantee realistic outcomes. This approach uses a state-of-the-art evolutionary algorithm: Gene-pool Optimal Mixing Evolutionary Algorithm. The performance of this algorithm, as well as the proposed model, is demonstrated using a real-world case study

    Review of Recent Developments in Technical Control Approaches for Voltage and Congestion Management in Distribution Networks

    Get PDF
    The increasing installation of distributed energy resources in residential households is causing frequent voltage and congestion issues in low- and medium-voltage electrical networks. To defer or avoid the costly and complicated grid expansion, technical, pricing-based, and market-based approaches have been proposed in the literature. These approaches can help distribution system operators (DSOs) exploit flexible resources to manage their grids. This study focuses on technical control approaches, which are easier to implement, and provides an up-to-date review of their developments in modeling, solution approaches, and innovative applications facilitating indirect control from DSOs. Challenges and future research directions are also discussed

    MARVEL, a four-telescope array for high-precision radial-velocity monitoring

    Get PDF
    Since the first discovery of a planet outside of our Solar System in 1995, exoplanet research has shifted from detecting to characterizing worlds around other stars. The TESS (NASA, launched 2019) and PLATO mission (ESA, planned launch 2026) will find and constrain the size of thousands of exoplanets around bright stars all over the sky. Radial velocity measurements are needed to characterize the orbit and mass, and complete the picture of densities and composition of the exoplanet systems found. The Ariel mission (ESA, planned launch 2028) will characterize exoplanet atmospheres with infrared spectroscopy. Characterization of stellar activity using optical spectroscopy from the ground is key to retrieve the spectral footprint of the planetary atmosphere in Ariel's spectra. To enable the scientific harvest of the TESS, PLATO and Ariel space missions, we plan to install MARVEL as an extension of the existing Mercator Telescope at the Roque De Los Muchachos Observatory on La Palma (SPAIN). MARVEL consists of an array of four 80 cm telescopes linked through optical fibers to a single high-resolution echelle spectrograph, optimized for extreme-precision radial velocity measurements. It can observe the radial velocities of four different stars simultaneously or, alternatively, combine the flux from four telescopes pointing to a single faint target in one spectrum. MARVEL is constructed by a KU Leuven (Belgium) led collaboration, with contributions from the UK, Austria, Australia, Sweden, Denmark and Spain. In this paper, we present the MARVEL instrument with special focus on the optical design and expected performance of the spectrograph, and report on the status of the project.Comment: SPIE Astronomical Telescopes + Instrumentation 2020, Ground-based and Airborne Instrumentation for Astronomy VII

    Training simulator reduces outage time

    Get PDF

    The Efficacy of Different Technologies on Grid-independency of a Small Energy Community With Varying Goals and Comfort Levels

    No full text
    This study quantifies the yearly electricity self-sufficiency rate and self-consumption rate of a small energy community for different distributed energy resources. The efficacy of different technologies on grid-independency are presented for varying community goals and resident comfort levels. The study simulates demand side management of appliances using a non-linear integer programming algorithm. Results show that the efficacy of distributed energy resources is highly dependent on resident engagement and community goals and highlight the importance of defining goals and values of residents before constructing community energy systems
    • …
    corecore