601 research outputs found

    Design, synthesis, conformational analysis and nucleic acid hybridisation properties of thymidyl pyrrolidine-amide oligonucleotide mimics (POM)

    Get PDF
    Pyrrolidine-amide oligonucleotide mimics (POM) 1 were designed to be stereochemically and conformationally similar to natural nucleic acids, but with an oppositely charged, cationic backbone. Molecular modelling reveals that the lowest energy conformation of a thymidyl-POM monomer is similar to the conformation adopted by ribonucleosides. An e cient solution phase synthesis of the thymidyl POM oligomers has been developed, using both N-alkylation and acylation coupling strategies. 1H NMR spectroscopy con rmed that the highly water soluble thymidyl-dimer, T2-POM, preferentially adopts both a con guration about the pyrrolidine N-atom and an overall conformation in D2O that are very similar to a typical C3 -endo nucleotide in RNA. In addition the nucleic acid hybridisation properties of a thymidyl-pentamer, T5-POM, with an N-terminal phthalimide group were evaluated using both UV spectroscopy and surface plasmon resonance (SPR). It was found that T5-POM exhibits very high a nity for complementary ssDNA and RNA, similar to that of a T5-PNA oligomer. SPR experiments also showed that T5-POM binds with high sequence delity to ssDNA under near physiological conditions. In addition, it was found possible to attenuate the binding a nity of T5-POM to ssDNA and RNA by varying both the ionic strength and pH. However, the most striking feature exhibited by T5-POM is an unprecedented kinetic binding selectivity for ssRNA over DNA

    InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation

    Get PDF
    Hydrogen-induced exfoliation combined with wafer bonding has been used to transfer ~600-nm-thick films of (100) InP to Si substrates. Cross-section transmission electron microscopy (TEM) shows a transferred crystalline InP layer with no observable defects in the region near the bonded interface and an intimately bonded interface. InP and Si are covalently bonded as inferred by the fact that InP/Si pairs survived both TEM preparation and thermal cycles up to 620 °C necessary for metalorganic chemical vapor deposition growth. The InP transferred layers were used as epitaxial templates for the growth of InP/In0.53Ga0.47As/InP double heterostructures. Photoluminescence measurements of the In0.53Ga0.47As layer show that it is optically active and under tensile strain, due to differences in the thermal expansion between InP and Si. These are promising results in terms of a future integration of Si electronics with optical devices based on InP-lattice-matched materials

    Role of hydrogen in hydrogen-induced layer exfoliation of germanium

    Get PDF
    The role of hydrogen in the exfoliation of Ge is studied using cross-sectional transmission electron microscopy, atomic force microscopy, and multiple-internal transmission mode Fourier-transform infrared absorption spectroscopy and compared with the mechanism in silicon. A qualitative model for the physical and chemical action of hydrogen in the exfoliation of these materials is presented, in which H-implantation creates damage states that store hydrogen and create nucleation sites for the formation of micro-cracks. These micro-cracks are chemically stabilized by hydrogen passivation, and upon annealing serve as collection points for molecular hydrogen. Upon further heating, the molecular hydrogen trapped in these cracks exerts pressure on the internal surfaces causing the cracks to extend and coalesce. When this process occurs in the presence of a handle substrate that provides rigidity to the thin film, the coalescence of these cracks leads to cooperative thin film exfoliation. In addition to clarifying the mechanism of H-induced exfoliation of single-crystal thin Ge films, the vibrational study helps to identify the states of hydrogen in heavily damaged Ge. Such information has practical importance for the optimization of H-induced layer transfer as a technological tool for materials integration with these materials systems

    Spectroscopic studies of the mechanism for hydrogen-induced exfoliation of InP

    Get PDF
    The motion and bonding configurations of hydrogen in InP are studied after proton implantation and subsequent annealing, using Fourier transform infrared (FTIR) spectroscopy. It is demonstrated that, as implanted, hydrogen is distributed predominantly in isolated pointlike configurations with a smaller concentration of extended defects with uncompensated dangling bonds. During annealing, the bonded hydrogen is released from point defects and is recaptured at the peak of the distribution by free internal surfaces in di-hydride configurations. At higher temperatures, immediately preceding exfoliation, rearrangement processes lead to the formation of hydrogen clusters and molecules. Reported results demonstrate that the exfoliation dynamics of hydrogen in InP and Si are markedly different, due to the higher mobility of hydrogen in InP and different implant-defect characteristics, leading to fundamental differences in the chemical mechanism for exfoliation

    Quantum dot opto-mechanics in a fully self-assembled nanowire

    Get PDF
    We show that fully self-assembled optically-active quantum dots (QDs) embedded in MBE-grown GaAs/AlGaAs core-shell nanowires (NWs) are coupled to the NW mechanical motion. Oscillations of the NW modulate the QD emission energy in a broad range exceeding 14 meV. Furthermore, this opto-mechanical interaction enables the dynamical tuning of two neighboring QDs into resonance, possibly allowing for emitter-emitter coupling. Both the QDs and the coupling mechanism -- material strain -- are intrinsic to the NW structure and do not depend on any functionalization or external field. Such systems open up the prospect of using QDs to probe and control the mechanical state of a NW, or conversely of making a quantum non-demolition readout of a QD state through a position measurement.Comment: 20 pages, 6 figure

    Donor binding energy and thermally activated persistent photoconductivity in high mobility (001) AlAs quantum wells

    Full text link
    A doping series of AlAs (001) quantum wells with Si delta-modulation doping on both sides reveals different dark and post-illumination saturation densities, as well as temperature dependent photoconductivity. The lower dark two-dimensional electron density saturation is explained assuming deep binding energy of Delta_DK = 65.2 meV for Si-donors in the dark. Persistent photoconductivity (PPC) is observed upon illumination, with higher saturation density indicating shallow post-illumination donor binding energy. The photoconductivity is thermally activated, with 4 K illumination requiring post-illumination annealing to T = 30 K to saturate the PPC. Dark and post-illumination doping efficiencies are reported.Comment: The values of binding energy changed from previous versions because of a better understanding for the dielectric permittivity. Also, the Gamma - X donor states are better explaine

    Observation of vortex-nucleated magnetization reversal in individual ferromagnetic nanotubes

    Get PDF
    The reversal of a uniform axial magnetization in a ferromagnetic nanotube (FNT) has been predicted to nucleate and propagate through vortex domains forming at the ends. In dynamic cantilever magnetometry measurements of individual FNTs, we identify the entry of these vortices as a function of applied magnetic field and show that they mark the nucleation of magnetization reversal. We find that the entry field depends sensitively on the angle between the end surface of the FNT and the applied field. Micromagnetic simulations substantiate the experimental results and highlight the importance of the ends in determining the reversal process. The control over end vortex formation enabled by our findings is promising for the production of FNTs with tailored reversal properties.Comment: 20 pages, 13 figure

    Nanometer-scale sharpness in corner-overgrown heterostructures

    Full text link
    A corner-overgrown GaAs/AlGaAs heterostructure is investigated with transmission and scanning transmission electron microscopy, demonstrating self-limiting growth of an extremely sharp corner profile of 3.5 nm width. In the AlGaAs layers we observe self-ordered diagonal stripes, precipitating exactly at the corner, which are regions of increased Al content measured by an XEDS analysis. A quantitative model for self-limited growth is adapted to the present case of faceted MBE growth, and the corner sharpness is discussed in relation to quantum confined structures. We note that MBE corner overgrowth maintains nm-sharpness even after microns of growth, allowing the realization of corner-shaped nanostructures.Comment: 4 pages, 3 figure
    corecore