914 research outputs found

    A simplified model of the Martian atmosphere - Part 1: a diagnostic analysis

    Get PDF
    In this paper we derive a reduced-order approximation to the vertical and horizontal structure of a simplified model of the baroclinically unstable Martian atmosphere. The original model uses the full hydrostatic primitive equations on a sphere, but has only highly simplified schemes to represent the detailed physics of the Martian atmosphere, e.g. forcing towards a plausible zonal mean temperature state using Newtonian cooling. Three different norms are used to monitor energy conversion processes in the model and are then compared. When four vertical modes (the barotropic and first three baroclinic modes) are retained in the reduced-order approximation, the correlation norm captures approximately 90% of the variance, while the kinetic energy and total energy norms capture approximately 83% and 78% of the kinetic and total energy respectively. We show that the leading order Proper Orthogonal Decomposition (POD) modes represent the dominant travelling waves in the baroclinically-unstable, winter hemisphere. In part 2 of our study we will develop a hierarchy of truncated POD-Galerkin expansions of the model equations using up to four vertical modes

    A simplified model of the Martian atmosphere - Part 2: a POD-Galerkin analysis

    Get PDF
    In Part I of this study Whitehouse et al. (2005) performed a diagnostic analysis of a simplied model of the Martian atmosphere, in which topography was absent and in which heating was modelled as Newtonian relaxation towards a zonally symmetric equilibrium temperature field. There we derived a reduced-order approximation to the vertical and the horizonal structure of the baroclinically unstable Martian atmosphere, retaining only the barotropic mode and the leading order baroclinic modes. Our objectives in Part II of the study are to incorporate these approximations into a Proper Orthogonal Decomposition-Galerkin expansion of the spherical quasi-geostrophic model in order to derive hierarchies of nonlinear ordinary differential equations for the time-varying coefficients of the spatial structures. Two different vertical truncations are considered, as well as three different norms and 3 different Galerkin truncations. We investigate each in turn, using tools from bifurcation theory, to determine which of the systems most closely resembles the data for which the original diagnostics were performed

    Resonance-Induced Effects in Photonic Crystals

    Get PDF
    For the case of a simple face-centered-cubic photonic crystal of homogeneous dielectric spheres, we examine to what extent single-sphere Mie resonance frequencies are related to band gaps and whether the width of a gap can be enlarged due to nearby resonances. Contrary to some suggestions, no spectacular effects may be expected. When the dielectric constant of the spheres ϵs\epsilon_s is greater than the dielectric constant ϵb\epsilon_b of the background medium, then for any filling fraction ff there exists a critical ϵc\epsilon_c above which the lowest lying Mie resonance frequency falls inside the lowest stop gap in the (111) crystal direction, close to its midgap frequency. If ϵs<ϵb\epsilon_s <\epsilon_b, the correspondence between Mie resonances and both the (111) stop gap and a full gap does not follow such a regular pattern. If the Mie resonance frequency is close to a gap edge, one can observe a resonance-induced widening of a relative gap width by 5\approx 5%.Comment: 14 pages, 3 figs., RevTex. For more info look at http://www.amolf.nl/external/wwwlab/atoms/theory/index.htm

    Photonic Band Gaps of Three-Dimensional Face-Centered Cubic Lattices

    Full text link
    We show that the photonic analogue of the Korringa-Kohn-Rostocker method is a viable alternative to the plane-wave method to analyze the spectrum of electromagnetic waves in a three-dimensional periodic dielectric lattice. Firstly, in the case of an fcc lattice of homogeneous dielectric spheres, we reproduce the main features of the spectrum obtained by the plane wave method, namely that for a sufficiently high dielectric contrast a full gap opens in the spectrum between the eights and ninth bands if the dielectric constant ϵs\epsilon_s of spheres is lower than the dielectric constant ϵb\epsilon_b of the background medium. If ϵs>ϵb\epsilon_s> \epsilon_b, no gap is found in the spectrum. The maximal value of the relative band-gap width approaches 14% in the close-packed case and decreases monotonically as the filling fraction decreases. The lowest dielectric contrast ϵb/ϵs\epsilon_b/\epsilon_s for which a full gap opens in the spectrum is determined to be 8.13. Eventually, in the case of an fcc lattice of coated spheres, we demonstrate that a suitable coating can enhance gap widths by as much as 50%.Comment: 19 pages, 6 figs., plain latex - a section on coated spheres, two figures, and a few references adde

    A simple formula for the L-gap width of a face-centered-cubic photonic crystal

    Get PDF
    The width L\triangle_L of the first Bragg's scattering peak in the (111) direction of a face-centered-cubic lattice of air spheres can be well approximated by a simple formula which only involves the volume averaged ϵ\epsilon and ϵ2\epsilon^2 over the lattice unit cell, ϵ\epsilon being the (position dependent) dielectric constant of the medium, and the effective dielectric constant ϵeff\epsilon_{eff} in the long-wavelength limit approximated by Maxwell-Garnett's formula. Apparently, our formula describes the asymptotic behaviour of the absolute gap width L\triangle_L for high dielectric contrast δ\delta exactly. The standard deviation σ\sigma steadily decreases well below 1% as δ\delta increases. For example σ<0.1\sigma< 0.1% for the sphere filling fraction f=0.2f=0.2 and δ20\delta\geq 20. On the interval δ(1,100)\delta\in(1,100), our formula still approximates the absolute gap width L\triangle_L (the relative gap width Lr\triangle_L^r) with a reasonable precision, namely with a standard deviation 3% (4.2%) for low filling fractions up to 6.5% (8%) for the close-packed case. Differences between the case of air spheres in a dielectric and dielectric spheres in air are briefly discussed.Comment: 13 pages, 4 figs., RevTex, two references added. For more info see http://www.amolf.nl/external/wwwlab/atoms/theory/index.htm

    Rashba effect in 2D mesoscopic systems with transverse magnetic field

    Full text link
    We present semiclassical and quantum mechanical results for the effects of a strong magnetic field in Quantum Wires in the presence of Rashba Spin Orbit coupling. Analytical and numerical results show how the perturbation acts in the presence of a transverse magnetic field in the ballistic regime and we assume a strong reduction of the backward scattering interaction which could have some consequences for the Tomonaga-Luttinger transport. We analyze the spin texture due to the action of Spin Orbit coupling and magnetic field often referring to the semiclassical solutions that magnify the singular spin polarization: results are obtained for free electrons in a twodimensional electron gas and for electrons in a Quantum Wire. We propose the systems as possible devices for the spin filtering at various regimes.Comment: 12 pages, 12 figures, to appear in Phys. Rev.

    A superconvergent representation of the Gersten-Nitzan and Ford-Webber nonradiative rates

    Full text link
    An alternative representation of the quasistatic nonradiative rates of Gersten and Nitzan [J. Chem. Phys. 1981, 75, 1139] and Ford and Weber [Phys. Rep. 1984, 113, 195] is derived for the respective parallel and perpendicular dipole orientations. Given the distance d of a dipole from a sphere surface of radius a, the representations comprise four elementary analytic functions and a modified multipole series taking into account residual multipole contributions. The analytic functions could be arranged hierarchically according to decreasing singularity at the short distance limit d ---> 0, ranging from d^{-3} over d^{-1} to ln (d/a). The alternative representations exhibit drastically improved convergence properties. On keeping mere residual dipole contribution of the modified multipole series, the representations agree with the converged rates on at least 99.9% for all distances, arbitrary particle sizes and emission wavelengths, and for a broad range of dielectric constants. The analytic terms of the representations reveal a complex distance dependence and could be used to interpolate between the familiar d^{-3} short-distance and d^{-6} long-distance behaviors with an unprecedented accuracy. Therefore, the representations could be especially useful for the qualitative and quantitative understanding of the distance behavior of nonradiative rates of fluorophores and semiconductor quantum dots involving nanometal surface energy transfer in the presence of metallic nanoparticles or nanoantennas. As a byproduct, a complete short-distance asymptotic of the quasistatic nonradiative rates is derived. The above results for the nonradiative rates translate straightforwardly to the so-called image enhancement factors Delta, which are of relevance for the surface-enhanced Raman scattering.Comment: 30 pages including 6 figure

    On the equivalence of the Langevin and auxiliary field quantization methods for absorbing dielectrics

    Get PDF
    Recently two methods have been developed for the quantization of the electromagnetic field in general dispersing and absorbing linear dielectrics. The first is based upon the introduction of a quantum Langevin current in Maxwell's equations [T. Gruner and D.-G. Welsch, Phys. Rev. A 53, 1818 (1996); Ho Trung Dung, L. Kn\"{o}ll, and D.-G. Welsch, Phys. Rev. A 57, 3931 (1998); S. Scheel, L. Kn\"{o}ll, and D.-G. Welsch, Phys. Rev. A 58, 700 (1998)], whereas the second makes use of a set of auxiliary fields, followed by a canonical quantization procedure [A. Tip, Phys. Rev. A 57, 4818 (1998)]. We show that both approaches are equivalent.Comment: 7 pages, RevTeX, no figure

    Preliminary results of study of infrared spectra of Venus from the orbital spacecraft Venera-9 and Venera-10

    Get PDF
    The infrared spectrum of Venus in the spectral range 1.6 to 2.8 was measured by means of the spectrometers aboard 'Venera-9' and 'Venera-10' orbital spacecrafts. Approximately 20 series of measurements were made near the pericenter of the orbit, each of which contains 150 spectra for each path intersecting the planet from the terminator to the limb. Phase angles lie within the limits from 60 to 120 deg

    Field theory of massive and massless vector particles in the Duffin - Kemmer - Petiau formalism

    Full text link
    Field theory of massive and massless vector particles is considered in the first-order formalism. The Hamiltonian form of equations is obtained after the exclusion of non-dynamical components. We obtain the canonical and symmetrical Belinfante energy-momentum tensors and their nonzero traces. We note that the dilatation symmetry is broken in the massive case but in the massless case the modified dilatation current is conserved. The canonical quantization is performed and the propagator of the massive fields is found in the Duffin - Kemmer - Petiau formalism.Comment: 20 pages, typos corrected, a reference added, journal version, accepted in Int.J.Mod.Phys.
    corecore