887 research outputs found

    Role of the middle ear muscle apparatus in mechanisms of speech signal discrimination

    Get PDF
    A method of impedance reflexometry was used to examine 101 students with hearing impairment in order to clarify the interrelation between speech discrimination and the state of the middle ear muscles. Ability to discriminate speech signals depends to some extent on the functional state of intraaural muscles. Speech discrimination was greatly impaired in the absence of stapedial muscle acoustic reflex, in the presence of low thresholds of stimulation and in very small values of reflex amplitude increase. Discrimination was not impeded in positive AR, high values of relative thresholds and normal increase of reflex amplitude in response to speech signals with augmenting intensity

    Photonic crystals of coated metallic spheres

    Full text link
    It is shown that simple face-centered-cubic (fcc) structures of both metallic and coated metallic spheres are ideal candidates to achieve a tunable complete photonic bandgap (CPBG) for optical wavelengths using currently available experimental techniques. For coated microspheres with the coating width to plasma wavelength ratio lc/λp≤10l_c/\lambda_p \leq 10% and the coating and host refractive indices ncn_c and nhn_h, respectively, between 1 and 1.47, one can always find a sphere radius rsr_s such that the relative gap width gwg_w (gap width to the midgap frequency ratio) is larger than 5% and, in some cases, gwg_w can exceed 9%. Using different coatings and supporting liquids, the width and midgap frequency of a CPBG can be tuned considerably.Comment: 14 pages, plain latex, 3 ps figures, to appear in Europhys. Lett. For more info on this subject see http://www.amolf.nl/research/photonic_materials_theory/moroz/moroz.htm

    Metallo-dielectric diamond and zinc-blende photonic crystals

    Full text link
    It is shown that small inclusions of a low absorbing metal can have a dramatic effect on the photonic band structure. In the case of diamond and zinc-blende photonic crystals, several complete photonic band gaps (CPBG's) can open in the spectrum, between the 2nd-3rd, 5th-6th, and 8th-9th bands. Unlike in the purely dielectric case, in the presence of small inclusions of a low absorbing metal the largest CPBG for a moderate dielectric constant (epsilon<=10) turns out to be the 2nd-3rd CPBG. The 2nd-3rd CPBG is the most important CPBG, because it is the most stable against disorder. For a diamond and zinc-blende structure of nonoverlapping dielectric and metallo-dielectric spheres, a CPBG begins to decrease with an increasing dielectric contrast roughly at the point where another CPBG starts to open--a kind of gap competition. A CPBG can even shrink to zero when the dielectric contrast increases further. Metal inclusions have the biggest effect for the dielectric constant 2<=epsilon<=12, which is a typical dielectric constant at near infrared and in the visible for many materials, including semiconductors and polymers. It is shown that one can create a sizeable and robust 2nd-3rd CPBG at near infrared and visible wavelengths even for a photonic crystal which is composed of more than 97% low refractive index materials (n<=1.45, i.e., that of silica glass or a polymer). These findings open the door for any semiconductor and polymer material to be used as genuine building blocks for the creation of photonic crystals with a CPBG and significantly increase the possibilities for experimentalists to realize a sizeable and robust CPBG in the near infrared and in the visible. One possibility is a construction method using optical tweezers, which is analyzed here.Comment: 25 pp, 23 figs, RevTex, to appear in Phys Rev B. For more information look at http://www.amolf.nl/research/photonic_materials_theory/moroz/moroz.htm

    On the equivalence of the Langevin and auxiliary field quantization methods for absorbing dielectrics

    Get PDF
    Recently two methods have been developed for the quantization of the electromagnetic field in general dispersing and absorbing linear dielectrics. The first is based upon the introduction of a quantum Langevin current in Maxwell's equations [T. Gruner and D.-G. Welsch, Phys. Rev. A 53, 1818 (1996); Ho Trung Dung, L. Kn\"{o}ll, and D.-G. Welsch, Phys. Rev. A 57, 3931 (1998); S. Scheel, L. Kn\"{o}ll, and D.-G. Welsch, Phys. Rev. A 58, 700 (1998)], whereas the second makes use of a set of auxiliary fields, followed by a canonical quantization procedure [A. Tip, Phys. Rev. A 57, 4818 (1998)]. We show that both approaches are equivalent.Comment: 7 pages, RevTeX, no figure

    Rashba effect in 2D mesoscopic systems with transverse magnetic field

    Full text link
    We present semiclassical and quantum mechanical results for the effects of a strong magnetic field in Quantum Wires in the presence of Rashba Spin Orbit coupling. Analytical and numerical results show how the perturbation acts in the presence of a transverse magnetic field in the ballistic regime and we assume a strong reduction of the backward scattering interaction which could have some consequences for the Tomonaga-Luttinger transport. We analyze the spin texture due to the action of Spin Orbit coupling and magnetic field often referring to the semiclassical solutions that magnify the singular spin polarization: results are obtained for free electrons in a twodimensional electron gas and for electrons in a Quantum Wire. We propose the systems as possible devices for the spin filtering at various regimes.Comment: 12 pages, 12 figures, to appear in Phys. Rev.

    A superconvergent representation of the Gersten-Nitzan and Ford-Webber nonradiative rates

    Full text link
    An alternative representation of the quasistatic nonradiative rates of Gersten and Nitzan [J. Chem. Phys. 1981, 75, 1139] and Ford and Weber [Phys. Rep. 1984, 113, 195] is derived for the respective parallel and perpendicular dipole orientations. Given the distance d of a dipole from a sphere surface of radius a, the representations comprise four elementary analytic functions and a modified multipole series taking into account residual multipole contributions. The analytic functions could be arranged hierarchically according to decreasing singularity at the short distance limit d ---> 0, ranging from d^{-3} over d^{-1} to ln (d/a). The alternative representations exhibit drastically improved convergence properties. On keeping mere residual dipole contribution of the modified multipole series, the representations agree with the converged rates on at least 99.9% for all distances, arbitrary particle sizes and emission wavelengths, and for a broad range of dielectric constants. The analytic terms of the representations reveal a complex distance dependence and could be used to interpolate between the familiar d^{-3} short-distance and d^{-6} long-distance behaviors with an unprecedented accuracy. Therefore, the representations could be especially useful for the qualitative and quantitative understanding of the distance behavior of nonradiative rates of fluorophores and semiconductor quantum dots involving nanometal surface energy transfer in the presence of metallic nanoparticles or nanoantennas. As a byproduct, a complete short-distance asymptotic of the quasistatic nonradiative rates is derived. The above results for the nonradiative rates translate straightforwardly to the so-called image enhancement factors Delta, which are of relevance for the surface-enhanced Raman scattering.Comment: 30 pages including 6 figure

    The Single-Particle density of States, Bound States, Phase-Shift Flip, and a Resonance in the Presence of an Aharonov-Bohm Potential

    Full text link
    Both the nonrelativistic scattering and the spectrum in the presence of the Aharonov-Bohm potential are analyzed. The single-particle density of states (DOS) for different self-adjoint extensions is calculated. The DOS provides a link between different physical quantities and is a natural starting point for their calculation. The consequences of an asymmetry of the S matrix for the generic self-adjoint extension are examined. I. Introduction II. Impenetrable flux tube and the density of states III. Penetrable flux tube and self-adjoint extensions IV. The S matrix and scattering cross sections V. The Krein-Friedel formula and the resonance VI. Regularization VII. The R --> 0 limit and the interpretation of self-adjoint extensions VIII. Energy calculations IX. The Hall effect in the dilute vortex limit X. Persistent current of free electrons in the plane pierced by a flux tube XI. The 2nd virial coefficient of nonrelativistic interacting anyons XII. Discussion of the results and open questionsComment: 68 pages, plain latex, 7 figures, 3 references and one figure added plus a few minor text correction

    Elasticity and electrostatics of plectonemic DNA

    Get PDF
    We present a self-contained theory for the mechanical response of DNA in single molecule experiments. Our model is based on a 1D continuum description of the DNA molecule and accounts both for its elasticity and for DNA-DNA electrostatic interactions. We consider the classical loading geometry used in experiments where one end of the molecule is attached to a substrate and the other one is pulled by a tensile force and twisted by a given number of turns. We focus on configurations relevant to the limit of a large number of turns, which are made up of two phases, one with linear DNA and the other one with superhelical DNA. The model takes into account thermal fluctuations in the linear phase and electrostatic interactions in the superhelical phase. The values of the torsional stress, of the supercoiling radius and angle, and key features of the experimental extension-rotation curves, namely the slope of the linear region and thermal buckling threshold, are predicted. They are found in good agreement with experimental data.Comment: 19 pages and 6 figure

    Tops and Writhing DNA

    Full text link
    The torsional elasticity of semiflexible polymers like DNA is of biological significance. A mathematical treatment of this problem was begun by Fuller using the relation between link, twist and writhe, but progress has been hindered by the non-local nature of the writhe. This stands in the way of an analytic statistical mechanical treatment, which takes into account thermal fluctuations, in computing the partition function. In this paper we use the well known analogy with the dynamics of tops to show that when subjected to stretch and twist, the polymer configurations which dominate the partition function admit a local writhe formulation in the spirit of Fuller and thus provide an underlying justification for the use of Fuller's "local writhe expression" which leads to considerable mathematical simplification in solving theoretical models of DNA and elucidating their predictions. Our result facilitates comparison of the theoretical models with single molecule micromanipulation experiments and computer simulations.Comment: 17 pages two figure

    Reduction of sulfur and oxidized forms of nitrogen by bacteria of Desulfuromonas sp., isolated from Yavorivske Lake, under the influence of ferrum citrate

    Get PDF
    Technogenic reservoirs mainly contain several possible electron acceptors of anaerobic respiration, many of which are dangerous to the environment. The succession of their reduction (and thus detoxification) by sulfur reducing bacteria is not yet sufficiently studied. We investigated the influence of ferrum (III) citrate, present in the cultivation medium, on the reduction of sulfur, nitrate and nitrite ions by sulfur reducing bacteria Desulfuromonas acetoxidans IMV B-7384, Desulfuromonas sp. Yavor-5 and Desulfuromonas sp. Yavor-7, isolated from Yavorivske Lake. It was established that ferrum (III) citrate inhibits the biomass accumulation and hydrogen sulfide production by bacteria of Desulfuromonas sp. after simultaneous addition to the medium of 3.47 mM S0 and 1.74–10.41 mM ferrum (III) citrate, as compared with growth and hydrogen sulfide production by bacteria in the medium with only sulfur. In the medium with the same initial content (3.47 mM) S0 and ferrum (III) citrate bacteria produced ferrum (II) ions at concentrations 3.5–3.9 times higher than that of hydrogen sulfide. Ferrum (III) citrate inhibits the biomass accumulation, the nitrate or nitrite ions reduction and the ammonium ions production by bacteria of Desulfuromonas sp. after simultaneous addition to the medium of 3.47&nbsp;mM NaNO3 or NaNO2 and 1.74–10.41 mM ferrum (III) citrate. In the medium with the same initial content (3.47 mM) NaNO3 and ferrum (III) citrate, bacteria produced ammonium ions at concentrations in 1.1 times higher than that of ferrum (II) ions. In the medium with the same initial content (3.47 mM) NaNO2 and ferrum (III) citrate, bacteria reduced 1.5–1.6 times more ferrum (III) than nitrite ions with production of ferrum (II) ions at concentrations 1.7 times higher than that of ammonium ions. The process of nitrate reduction carried out by bacteria of Desulfuromonas genus was less sensitive to the negative influence of ferrum (III) citrate, compared to the process of nitrite ions reduction. When the reduction of nitrate ions by bacteria in the presence of 1.74–10.41 mM ferrum (III) citrate decreased by 1.4–2.2 times, then the reduction of nitrite ions decreased by 1.8–3.2 times compared to their reduction in media with only NaNO3 or NaNO2, respectively. Although the reduction of ferrum (III) by cells in media with 3.47 mM S0, NaNO3 or NaNO2 and 1.74–10.41 mM ferrum (III) citrate decreased by 1.6–2.7, 1.6–2.7 and 1.1–2.2 times, respectively, compared to the reduction in medium with only ferrum (III) citrate, the investigated strains of bacteria were resistant to high concentrations of trivalent ferrum compounds and can therefore can be used in technologies of complex purification of environments polluted by heavy metal and nitrogen compounds
    • …
    corecore