216 research outputs found

    Stratification of canopy magnetic fields in a plage region. Constraints from a spatially-regularized weak-field approximation method

    Full text link
    The role of magnetic fields in the chromospheric heating problem remains greatly unconstrained. Most theoretical predictions from numerical models rely on a magnetic configuration, field strength and connectivity whose details have not been well established with observational studies. High-resolution studies of chromospheric magnetic fields in plage are very scarce or non-existent in general. Our aim is to study the stratification of the magnetic field vector in plage regions. We use high-spatial resolution full-Stokes observations acquired with CRISP instrument at the Swedish 1-m Solar Telescope in the Mg I λ\lambda5173, Na I λ\lambda5896 and Ca II λ\lambda8542 lines. We have developed a spatially-regularized weak-field approximation (WFA) method based on the idea of spatial regularization. This method allows for a fast computation of magnetic field maps for an extended field of view. The fidelity of this new technique has been assessed using a snapshot from a realistic 3D magnetohydrodynamics simulation. We have derived the depth-stratification of the line-of-sight component of the magnetic field from the photosphere to the chromosphere in a plage region. The magnetic fields are concentrated in the intergranular lanes in the photosphere and expand horizontally toward the chromosphere, filling all the space and forming a canopy. Our results suggest that the lower boundary of this canopy must be located around 400-600 km from the photosphere. The mean canopy total magnetic field strength in the lower chromosphere (z760z\approx760 km) is 658 G. At z=1160z=1160 km we estimate 417\approx 417 G. We propose a modification to the WFA that improves its applicability to data with worse signal-to-noise ratio. These methods provide a quick and reliable way of studying multi-layer magnetic field observations without the many difficulties inherent to other inversion methods.Comment: Accepted for publication on 2020-08-2

    Atomic structure and vibrational properties of icosahedral B4_4C boron carbide

    Full text link
    The atomic structure of icosahedral B4_4C boron carbide is determined by comparing existing infra-red absorption and Raman diffusion measurements with the predictions of accurate {\it ab initio} lattice-dynamical calculations performed for different structural models. This allows us to unambiguously determine the location of the carbon atom within the boron icosahedron, a task presently beyond X-ray and neutron diffraction ability. By examining the inter- and intra-icosahedral contributions to the stiffness we show that, contrary to recent conjectures, intra-icosahedral bonds are harder.Comment: 9 pages including 3 figures, accepted in Physical Review Letter

    Spatio-temporal analysis of chromospheric heating in a plage region

    Full text link
    Our knowledge of the heating mechanisms that are at work in the chromosphere of plage regions remains highly unconstrained from observational studies. The purpose of our study is to estimate the chromospheric heating terms from a plage dataset, characterize their spatio-temporal distribution and set constraints on the heating processes that are at work. We make use of NLTE inversions to infer a model of the photosphere and chromosphere of a plage dataset acquired with the Swedish 1-m Solar Telescope. We use this model atmosphere to calculate the chromospheric radiative losses from H i, Ca ii and Mg ii atoms. We approximate the chromospheric heating terms by the net radiative losses predicted by the inverted model. In order to make the analysis of time-series over a large field-of-view computationally tractable, we make use of a neural network. In the lower chromosphere, the contribution from the Ca ii lines is dominant and located in the surroundings of the photospheric footpoints. In the upper chromosphere, the H i contribution is dominant. Radiative losses in the upper chromosphere form an homogeneous patch that covers the plage region. The net radiative losses can be split in a periodic component with an average amplitude of ampQ = 7.6 kW m^{-2} and a static (or very slowly evolving) component with a mean value of -26.1 kW m^{-2}. Our interpretation is that in the lower chromosphere, the radiative losses are tracing the sharp lower edge of the hot magnetic canopy, where the electric current is expected to be large. In the upper chromosphere, both the magnetic field and the distribution of net radiative losses are room-filling, whereas the amplitude of the periodic component is largest. Our results suggest that acoustic wave heating may be responsible for one third of the energy deposition in the upper chromosphere, whereas other heating mechanisms must be responsible for the rest

    Stratification of physical parameters in a C-class solar flare using multi-line observations

    Full text link
    We present high-resolution and multi-line observations of a C2-class solar flare, occurred in NOAA AR 12740 on May 6, 2019. The rise, peak and decay phases of the flare were recorded continuously and quasi-simultaneously in the Ca II K line with the CHROMIS instrument, the Ca II 8542 and Fe I 6173 \AA lines with the CRISP instrument at the SST. The observations in the chromospheric Ca II lines exhibit intense brightening near the flare footpoints. At these locations, a non-LTE inversion code was employed to infer the temperature, magnetic field, line-of-sight (LOS) velocity and microturbulent velocity stratification in the flaring atmosphere. During the flare peak time, the LOS velocity shows both upflows and downflows around the flare footpoints in the upper chromosphere and lower chromosphere, respectively. Moreover, the temporal analysis of the LOS magnetic field at the flarepoints exhibits a maximum change of ~600 G. After the flare, the LOS magnetic field decreases to the non-flaring value, exhibiting no permanent or step-wise change. The analysis of response functions to the temperature, LOS magnetic field and velocity shows that the Ca II lines exhibit enhanced sensitivity to the deeper layers (i.e., log_t ~ -3) of the flaring atmosphere, whereas for the non-flaring atmosphere they are mainly sensitive around log_t ~ -4. We suggest that a fraction of the apparent increase in the LOS magnetic field at the flare footpoints may be due to the increase in the sensitivity of the Ca II 8542 \AA line in the deeper layers, where the field strength is relatively stronger. The rest can be due to magnetic field reconfiguration during the flare. Our observations illustrate that even a less intense C-class flare can heat the deeper layers of the solar chromosphere, mainly at the flare footpoints, without affecting the photosphere.Comment: Short abstract, 12 figures, 1 table, submitted to A&

    1-Hydr­oxy-1,1,3,3,3-penta­phenyl­disiloxane, [Si2O(OH)(Ph)5], at 150 K

    Get PDF
    In the crystal structure of the title compound, C30H26O2Si2, one Si(Ph)3 residue is bound to another Si(OH)(Ph)2 residue via a nonlinear Si—O—Si bridge. The asymmetric unit is composed of four [Si2O(OH)(Ph)5] molecules. Each pair of adjacent molecules inter­acts via strong and highly directional O—H⋯O hydrogen bonds connecting neighbouring Si—OH units, and via inter-unit O—H⋯π contacts connecting the second hydroxyl groups with adjacent phenyl groups

    Non-LTE inversions of a confined X2.2 flare: I. Vector magnetic field in the photosphere and chromosphere : I. The vector magnetic field in the photosphere and chromosphere

    Get PDF
    Obtaining the magnetic field vector accurately in the solar atmosphere is essential for studying changes in field topology during flares and to reliably model space weather. We tackle this problem by applying various inversion methods to a confined X2.2 flare in NOAA AR 12673 on September 6, 2017, comparing the photospheric and chromospheric magnetic field vector with those from two numerical models of this event. We obtain the photospheric field from Milne-Eddington (ME) and (non-)local thermal equilibrium (non-LTE) inversions of Hinode SOT/SP Fe I 6301.5Å and 6302.5Å. The chromospheric field is obtained from a spatially-regularised weak field approximation (WFA) and non-LTE inversions of Ca II 8542Å observed with CRISP at the Swedish 1-m Solar Telescope. The LTE- and non-LTE-inferred photospheric field components are strongly correlated throughout the atmosphere, with stronger field and higher temperatures in the non-LTE inversions. For the chromospheric field, the non-LTE inversions correlate well with the spatially-regularised WFA. We find strong-field patches of over 4.5 kG in the photosphere, co-located with similar concentrations exceeding 3 kG in the chromosphere. The obtained field strengths are up to 2-3 times higher than in the numerical models, with more concentrated and structured photosphere-to-chromosphere shear close to the polarity inversion line. The LTE and non-LTE Fe I inversions yield essentially the same photospheric field, while ME inversions fail to reproduce the field vector orientation where Fe I is in emission. Our inversions confirm the locations of flux rope footpoints that are predicted by numerical models. However, pre-processing and lower spatial resolution lead to weaker and smoother field in the models than what the data indicate. This emphasises the need for higher spatial resolution in the models to better constrain pre-eruptive flux ropes.Peer reviewe

    A neutron scattering study of two-magnon states in the quantum magnet copper nitrate

    Full text link
    We report measurements of the two-magnon states in a dimerized antiferromagnetic chain material, copper nitrate (Cu(NO3)2*2.5D2O). Using inelastic neutron scattering we have measured the one and two magnon excitation spectra in a large single crystal. The data are in excellent agreement with a perturbative expansion of the alternating Heisenberg Hamiltonian from the strongly dimerized limit. The expansion predicts a two-magnon bound state for q ~ (2n+1)pi*d which is consistent with the neutron scattering data.Comment: 11 pages of revtex style with 6 figures include

    Generalized calculation of magnetic coupling constants for Mott-Hubbard insulators: Application to ferromagnetic Cr compounds

    Full text link
    Using a Rayleigh-Schr\"odinger perturbation expansion of multi-band Hubbard models, we present analytic expressions for the super-exchange coupling constants between magnetic transition metal ions of arbitrary separation in Mott-Hubbard insulators. The only restrictions are i) all ligand ions are closed shell anions and ii) all contributing interaction paths are of equal length. For short paths, our results essentially confirm the Goodenough-Kanamori-Anderson rules, yet in general there does not exist any simple rule to predict the sign of the magnetic coupling constants. The most favorable situation for ferromagnetic coupling is found for ions with less than half filled d shells, the (relative) tendency to ferromagnetic coupling increases with increasing path length. As an application, the magnetic interactions of the Cr compounds Rb2_2CrCl4_4, CrCl3_3, CrBr3_3 and CrI3_3 are investigated, all of which except CrCl3_3 are ferromagnets.Comment: 13 pages, 6 eps figures, submitted to Phys Rev

    Nuclear Inelastic X-Ray Scattering of FeO to 48 GPa

    Full text link
    The partial density of vibrational states has been measured for Fe in compressed FeO (w\"ustite) using nuclear resonant inelastic x-ray scattering. Substantial changes have been observed in the overall shape of the density of states close to the magnetic transiton around 20 GPa from the paramagnetic (low pressure) to the antiferromagnetic (high pressure) state. Our data indicate a substantial softening of the aggregate sound velocities far below the transition, starting between 5 and 10 GPa. This is consistent with recent radial x-ray diffraction measurements of the elastic constants in FeO. The results indicate that strong magnetoelastic coupling in FeO is the driving force behind the changes in the phonon spectrum of FeO.Comment: 4 pages, 4 figure
    corecore