31 research outputs found

    Vibronic Transitions of Atomic Bubbles in Condensed 4He

    Get PDF
    Laser spectroscopy of atomic dopants can be used as a tool for the investigation of elementary excitations in quantum fluids and solids. Here we present results of a laser-spectroscopic study of transition-metal (Au, Cu) atoms in liquid and solid 4He. In particular we observe transitions of inner shell electrons that have not been studied before. Such transitions are weakly perturbed by the interaction with the helium matrix and display a characteristic structure composed of a sharp zero-phonon line and a relatively broad phonon win

    Strong light-matter coupling: parametric interactions in a cavity and free-space

    Get PDF
    We consider parametric interactions of laser pulses in a coherent macroscopic ensemble of resonant atoms, which are possible in the strong coupling regime of light-matter interaction. The spectrum condensation (lasing at collective vacuum Rabi sidebands) was studied in an active cavity configuration. Parametric interactions under the strong light-matter coupling were proved even in free space. In contrast to bichromatic beats in a cavity, they were shown to appear due to interference between polaritonic wave packets of different group velocities.Comment: 4 pages, 2 figure

    Atomic bubbles in impurity-stabilized solid ⁴He

    No full text
    The optical absorption and fluorescence spectra of alkali atoms isolated in liquid and solid He matrices depend on specific macroscopic matrix properties, such as their molar volume and (anisotropic) elasticity constants, and provide thus information about the quantum matrix. We have applied optical spectroscopy to investigate the properties of a recently discovered impurity-stabilized doped ⁴He solid that exists in equilibrium with pressurized superfluid helium close to the solidification/melting point of pure helium. The difference between the local He density around the implanted atoms obtained in the present experiment and the average density measured earlier suggests that the impurity-stabilized solid He is in fact a porous structure filled with liquid helium

    Spectroscopy of barium atoms in liquid and solid helium matrices

    Full text link

    Coherent interaction of laser pulses in a resonant optically dense extended medium under the regime of strong field-matter coupling

    Full text link
    Nonstationary pump-probe interaction between short laser pulses propagating in a resonant optically dense coherent medium is considered. A special attention is paid to the case, where the density of two-level particles is high enough that a considerable part of the energy of relatively weak external laser-fields can be coherently absorbed and reemitted by the medium. Thus, the field of medium reaction plays a key role in the interaction processes, which leads to the collective behavior of an atomic ensemble in the strongly coupled light-matter system. Such behavior results in the fast excitation interchanges between the field and a medium in the form of the optical ringing, which is analogous to polariton beating in the solid-state optics. This collective oscillating response, which can be treated as successive beats between light wave-packets of different group velocities, is shown to significantly affect propagation and amplification of the probe field under its nonlinear interaction with a nearly copropagating pump pulse. Depending on the probe-pump time delay, the probe transmission spectra show the appearance of either specific doublet or coherent dip. The widths of these features are determined by the density-dependent field-matter coupling coefficient and increase during the propagation. Besides that, the widths of the coherent features, which appear close to the resonance in the broadband probe-spectrum, exceed the absorption-line width, since, under the strong-coupling regime, the frequency of the optical ringing exceeds the rate of incoherent relaxation. Contrary to the stationary strong-field effects, the density- and coordinate-dependent transmission spectra of the probe manifest the importance of the collective oscillations and cannot be obtained in the framework of the single-atom model.Comment: 10 pages, 8 figures, to be published in Phys. Rev.

    Resonant nonstationary amplification of polychromatic laser pulses and conical emission in an optically dense ensemble of neon metastable atoms

    Full text link
    Experimental and numerical investigation of single-beam and pump-probe interaction with a resonantly absorbing dense extended medium under strong and weak field-matter coupling is presented. Significant probe beam amplification and conical emission were observed. Under relatively weak pumping and high medium density, when the condition of strong coupling between field and resonant matter is fulfilled, the probe amplification spectrum has a form of spectral doublet. Stronger pumping leads to the appearance of a single peak of the probe beam amplification at the transition frequency. The greater probe intensity results in an asymmetrical transmission spectrum with amplification at the blue wing of the absorption line and attenuation at the red one. Under high medium density, a broad band of amplification appears. Theoretical model is based on the solution of the Maxwell-Bloch equations for a two-level system. Different types of probe transmission spectra obtained are attributed to complex dynamics of a coherent medium response to broadband polychromatic radiation of a multimode dye laser.Comment: 9 pages, 13 figures, corrected, Fig.8 was changed, to be published in Phys. Rev.

    A coarse-grained Monte Carlo approach to diffusion processes in metallic nanoparticles

    Get PDF
    A kinetic Monte Carlo approach on a coarse-grained lattice is developed for the simulation of surface diffusion processes of Ni, Pd and Au structures with diameters in the range of a few nanometers. Intensity information obtained via standard two-dimensional transmission electron microscopy imaging techniques is used to create three-dimensional structure models as input for a cellular automaton. A series of update rules based on reaction kinetics is defined to allow for a stepwise evolution in time with the aim to simulate surface diffusion phenomena such as Rayleigh breakup and surface wetting. The material flow, in our case represented by the hopping of discrete portions of metal on a given grid, is driven by the attempt to minimize the surface energy, which can be achieved by maximizing the number of filled neighbor cells

    Phonon generation in condensed

    No full text
    We discuss the interaction between nanometer-sized defects (atomic bubbles) and elementary excitations (phonons) in quantum fluids and solids. We observe that optical excitations in embedded metal atoms induce bubble expansions/contractions that create strongly localized phonon wave packets in the quantum matrix. We derive the structure and dynamics of these vibronic excitations from the experimental laser-induced fluorescence spectra of Au and Cu atoms in liquid and solid He. The atomic vibrations are found to be strongly damped on the 50 Å and 5 ps scales in agreement with pure hydrodynamic estimations
    corecore