13 research outputs found

    Análisis crítico desde el enfoque de capacidades de un proyecto de Transferencia de Tecnología y Formación en Energías Renovables. El caso de la Universidad Ista de la República Democrática del Congo (RDC)

    Full text link
    Critical analysis from the capabilities approach of a project that was subsidized by the Generalitat Valenciana, executed by the NGO "Spanish League for Human Rights" with the technical support of the UPV. It consisted of a technology transfer to the ISTA University of the Republic Democratic Republic of Congo, for the production of electricity using renewable energies, as well as the training of teachers-researchers of that institution, done at the UPV. The analysis focuses on people and applies the principles of human development (DH) to define the true impacts of the project, it considers the processes and not only the results,interviews such as: participation, empowerment, Sustainability or equity. Making visible in this way, the real changes that the project caused in the lives of the people who participate in the ISTA part and determine if the technological process generated the real social transformation, based on the theories of "Technologies for freedom (T4F). The results of the analysis serve as a consultation document for the planning and organization of future technology transfer projects for human developmentAnálisis crítico desde el enfoque de capacidades de un proyecto que fue subvencionado por la Generalitat Valenciana, ejecutado por la ONGD ¿Liga Española pro Derechos Humanos¿ con el apoyo técnico de la UPV y que consistió en transferir tecnología a la Universidad ISTA de la República Democrática del Congo, para la producción de energía eléctrica utilizando energías renovables, así como la formación en dicha tecnología de docentes-investigadores de aquella institución, en la UPV. En el análisis se pone el foco de atención en las personas y se aplican los principios del desarrollo humano (DH) para definir los verdaderos impactos del proyecto, considerando los procesos y no sólo los resultados, tales como: la participación, el empoderamiento, la sostenibilidad o la equidad. Haciendo visible de esta forma, los cambios reales que el proyecto causó en la vida de las personas que participaron por parte del ISTA y determinando si el proceso tecnológico generó transformación social real, a la luz de las teorías de las ¿Tecnologías para la libertad¿ (T4F). Los resultados del análisis podrán servir como documento de consulta para la planificación y estructuración de futuros proyectos de trasferencia de tecnología para el desarrollo humanoMoros Gómez, MC. (2017). Análisis crítico desde el enfoque de capacidades de un proyecto de Transferencia de Tecnología y Formación en Energías Renovables. El caso de la Universidad Ista de la República Democrática del Congo (RDC). Universitat Politècnica de València. http://hdl.handle.net/10251/8532

    Sustainable Cooking Based on a 3 kW Air-Forced Multifuel Gasification Stove Using Alternative Fuels Obtained from Agricultural Wastes

    Full text link
    [EN] In this research work, a 3 kW stove based on biomass gasification, together with a fuel obtained from agriculture wastes as an alternative to the commonly used charcoal, have been developed looking for sustainable cooking in poor communities. Alternative fuel (BSW) are briquettes obtained by carbonization and densification of agricultural solid wastes. Two laboratory methods, water boil test (WBT) and controlled kitchen test (CCT) were used to analyze the performance of this approach by comparing the proposed improved stove (ICS-G) with the traditional one (TCS), when using both types of fuels: charcoal and BSW. Results indicate that consumption of charcoal decreases by 61% using the improved ICS-G stove instead of the traditional TCS. Similar fuel savings are obtained when using BSW fuels. BSW fuel allows for a carbon monoxide (CO) emission reduction of 41% and 67%, and fine particles (PM) in a 84% and 93%, during the high and low power phases of the tests, respectively. Use of BSW fuel and ICS-G stove instead of the TCS stove with charcoal, provides a cooking time reduction of 18%, savings of $353.5 per year per family in the purchase of fuel, and an emission reduction of 3.2 t CO2/year.family.This research received no external funding. P.B.M. was funded by the Generalitat Valenciana under the grant ACIF/2018/106.Hurtado-Perez, E.; Mulumba Ilunga, O.; Alfonso-Solar, D.; Moros Gómez, MC.; Bastida-Molina, P. (2020). Sustainable Cooking Based on a 3 kW Air-Forced Multifuel Gasification Stove Using Alternative Fuels Obtained from Agricultural Wastes. Sustainability. 12(18):1-15. https://doi.org/10.3390/su12187723S1151218Bhutto, A. W., Bazmi, A. A., Karim, S., Abro, R., Mazari, S. A., & Nizamuddin, S. (2019). Promoting sustainability of use of biomass as energy resource: Pakistan’s perspective. Environmental Science and Pollution Research, 26(29), 29606-29619. doi:10.1007/s11356-019-06179-7Maes, W. H., & Verbist, B. (2012). Increasing the sustainability of household cooking in developing countries: Policy implications. Renewable and Sustainable Energy Reviews, 16(6), 4204-4221. doi:10.1016/j.rser.2012.03.031Zhang, Y., Zhang, Z., Zhou, Y., & Dong, R. (2018). The Influences of Various Testing Conditions on the Evaluation of Household Biomass Pellet Fuel Combustion. Energies, 11(5), 1131. doi:10.3390/en11051131Mwampamba, T. H., Ghilardi, A., Sander, K., & Chaix, K. J. (2013). Dispelling common misconceptions to improve attitudes and policy outlook on charcoal in developing countries. Energy for Sustainable Development, 17(2), 75-85. doi:10.1016/j.esd.2013.01.001Jones, D., Ryan, C. M., & Fisher, J. (2016). Charcoal as a diversification strategy: The flexible role of charcoal production in the livelihoods of smallholders in central Mozambique. Energy for Sustainable Development, 32, 14-21. doi:10.1016/j.esd.2016.02.009Chiteculo, V., Lojka, B., Surový, P., Verner, V., Panagiotidis, D., & Woitsch, J. (2018). Value Chain of Charcoal Production and Implications for Forest Degradation: Case Study of Bié Province, Angola. Environments, 5(11), 113. doi:10.3390/environments5110113Lynch, M. (2002). Reducing Environmental Damage Caused by the Collection of Cooking Fuel by Refugees. Refuge: Canada’s Journal on Refugees, 18-27. doi:10.25071/1920-7336.21280Barbieri, J., Parigi, F., Riva, F., & Colombo, E. (2018). Laboratory Testing of the Innovative Low-Cost Mewar Angithi Insert for Improving Energy Efficiency of Cooking Tasks on Three-Stone Fires in Critical Contexts. Energies, 11(12), 3463. doi:10.3390/en11123463Ramanathan, V., & Carmichael, G. (2008). Global and regional climate changes due to black carbon. Nature Geoscience, 1(4), 221-227. doi:10.1038/ngeo156Ndindeng, S. A., Wopereis, M., Sanyang, S., & Futakuchi, K. (2019). Evaluation of fan-assisted rice husk fuelled gasifier cookstoves for application in sub-Sahara Africa. Renewable Energy, 139, 924-935. doi:10.1016/j.renene.2019.02.132Jagger, P., & Das, I. (2018). Implementation and scale-up of a biomass pellet and improved cookstove enterprise in Rwanda. Energy for Sustainable Development, 46, 32-41. doi:10.1016/j.esd.2018.06.005Gitau, J. K., Sundberg, C., Mendum, R., Mutune, J., & Njenga, M. (2019). Use of Biochar-Producing Gasifier Cookstove Improves Energy Use Efficiency and Indoor Air Quality in Rural Households. Energies, 12(22), 4285. doi:10.3390/en12224285Kirch, T., Medwell, P. R., Birzer, C. H., & van Eyk, P. J. (2020). Feedstock Dependence of Emissions from a Reverse-Downdraft Gasifier Cookstove. Energy for Sustainable Development, 56, 42-50. doi:10.1016/j.esd.2020.02.008Dresen, E., DeVries, B., Herold, M., Verchot, L., & Müller, R. (2014). Fuelwood Savings and Carbon Emission Reductions by the Use of Improved Cooking Stoves in an Afromontane Forest, Ethiopia. Land, 3(3), 1137-1157. doi:10.3390/land3031137Barbieri, J., Riva, F., & Colombo, E. (2017). Cooking in refugee camps and informal settlements: A review of available technologies and impacts on the socio-economic and environmental perspective. Sustainable Energy Technologies and Assessments, 22, 194-207. doi:10.1016/j.seta.2017.02.007Tucho, G., & Nonhebel, S. (2015). Bio-Wastes as an Alternative Household Cooking Energy Source in Ethiopia. Energies, 8(9), 9565-9583. doi:10.3390/en8099565Smith, K. R., Uma, R., Kishore, V. V. N., Zhang, J., Joshi, V., & Khalil, M. A. K. (2000). Greenhouse Implications of Household Stoves: An Analysis for India. Annual Review of Energy and the Environment, 25(1), 741-763. doi:10.1146/annurev.energy.25.1.741Bhojvaid, V., Jeuland, M., Kar, A., Lewis, J., Pattanayak, S., Ramanathan, N., … Rehman, I. (2014). How do People in Rural India Perceive Improved Stoves and Clean Fuel? Evidence from Uttar Pradesh and Uttarakhand. International Journal of Environmental Research and Public Health, 11(2), 1341-1358. doi:10.3390/ijerph110201341Loo, J., Hyseni, L., Ouda, R., Koske, S., Nyagol, R., Sadumah, I., … Stanistreet, D. (2016). User Perspectives of Characteristics of Improved Cookstoves from a Field Evaluation in Western Kenya. International Journal of Environmental Research and Public Health, 13(2), 167. doi:10.3390/ijerph13020167Perspective Monde 2020https://perspective.usherbrooke.ca/bilan/servlet/BMTendanceStatPays?codeTheme=5&codeStat=RS.NUT.PROD.PP.MT&codePays=COD&optionsPeriodes=Aucune&codeTheme2=5&codeStat2=RSA.FAO.RicePaddy&codePays2=COD&optionsDetPeriodes=avecNomP&langue=frStrategie Nationale De Developpement De La Riziculture (SNDR)https://riceforafrica.net/images/pdf/NRDS_drc_fr-min.pdfPanwar, N. L., & Rathore, N. S. (2008). Design and performance evaluation of a 5kW producer gas stove. Biomass and Bioenergy, 32(12), 1349-1352. doi:10.1016/j.biombioe.2008.04.007Panwar, N. L., Kurchania, A. K., & Rathore, N. S. (2009). Mitigation of greenhouse gases by adoption of improved biomass cookstoves. Mitigation and Adaptation Strategies for Global Change, 14(6), 569-578. doi:10.1007/s11027-009-9184-7Normas UNE-AENOR (Spain)https://www.aenor.com/normas-y-libros/buscador-de-normas?k=(i:7516040)Hurtado Pérez, E. J., Mulumba Ilunga, O., Moros Gómez, M. C., & Vargas Salgado, C. (2017). Analyse des impacts économico-environnementaux du changement d’usage d’un foyer de cuisson traditionnel par un foyer de cuisson amélioré optimisé à charbon de bois dans les ménages de la ville de Kinshasa. Déchets, sciences et techniques, (N°75). doi:10.4267/dechets-sciences-techniques.3714Siva Kumar, S., Pitchandi, K., & Natarajan, E. (2008). Modeling and Simulation of Down Draft Wood Gasifier. Journal of Applied Sciences, 8(2), 271-279. doi:10.3923/jas.2008.271.279Ojolo, S. J., Abolarin, S. M., & Adegbenro, O. (2012). Development of a Laboratory Scale Updraft Gasifier. International Journal of Manufacturing Systems, 2(2), 21-42. doi:10.3923/ijmsaj.2012.21.42Panwar, N. L. (2009). Design and performance evaluation of energy efficient biomass gasifier based cookstove on multi fuels. Mitigation and Adaptation Strategies for Global Change, 14(7), 627-633. doi:10.1007/s11027-009-9187-4Jetter, J. J., & Kariher, P. (2009). Solid-fuel household cook stoves: Characterization of performance and emissions. Biomass and Bioenergy, 33(2), 294-305. doi:10.1016/j.biombioe.2008.05.014Berrueta, V. M., Edwards, R. D., & Masera, O. R. (2008). Energy performance of wood-burning cookstoves in Michoacan, Mexico. Renewable Energy, 33(5), 859-870. doi:10.1016/j.renene.2007.04.016Smith, K. R., Dutta, K., Chengappa, C., Gusain, P. P. S., Berrueta, O. M. and V., Edwards, R., … Shields, K. N. (2007). Monitoring and evaluation of improved biomass cookstove programs for indoor air quality and stove performance: conclusions from the Household Energy and Health Project. Energy for Sustainable Development, 11(2), 5-18. doi:10.1016/s0973-0826(08)60396-8Bailis, R., Berrueta, V., Chengappa, C., Dutta, K., Edwards, R., Masera, O., … Smith, K. R. (2007). Performance testing for monitoring improved biomass stove interventions: experiences of the Household Energy and Health Project. Energy for Sustainable Development, 11(2), 57-70. doi:10.1016/s0973-0826(08)60400-7MacCarty, N., Ogle, D., Still, D., Bond, T., & Roden, C. (2008). A laboratory comparison of the global warming impact of five major types of biomass cooking stoves. Energy for Sustainable Development, 12(2), 56-65. doi:10.1016/s0973-0826(08)60429-9Lombardi, F., Riva, F., Bonamini, G., Barbieri, J., & Colombo, E. (2017). Laboratory protocols for testing of Improved Cooking Stoves (ICSs): A review of state-of-the-art and further developments. Biomass and Bioenergy, 98, 321-335. doi:10.1016/j.biombioe.2017.02.005Lombardi, F., Riva, F., & Colombo, E. (2018). Dealing with small sets of laboratory test replicates for Improved Cooking Stoves (ICSs): Insights for a robust statistical analysis of results. Biomass and Bioenergy, 115, 27-34. doi:10.1016/j.biombioe.2018.04.00

    Energy sustainability evolution in the Mediterranean Countries and synergies from a global energy scenario for the area

    Full text link
    [EN] Energy supply is essential for the development of any society and search for energy sustainability is a must with poverty reduction and environmental sustainability as the two challenges to consider for any energy scenario. Meanwhile environmental damage receives predominant attention in the energy sustainability analysis, a lack of attention exists to others, such as external dependence for energy supply or availability of enough energy for people. However, these factors also compromise the sustainability of the assumed policies. An analysis considering these three factors has been developed and applied to countries in the Mediterranean area by considering two well-defined zones: the North side with an adequate level of energy consumption, but with excessive CO2 emissions and high external dependence on energy supply; and, by the contrary, the Middle East and North African countries, with a deficit in energy supply, but without problems in CO2 emissions and external energy supply. Results show a requirement of a 100% renewable scenario for the countries in the North area, while those in the MENA need to increase drastically their energy demand with a significant contribution from renewable sources. Assuming a global scenario for the entire area, energy sustainability could be reached with less demanding requirements.This work was partly supported in part by the Spanish Public Administration "Ministerio de Universidades" under the grant Margarita Salas-Universitat Politecnica de Valencia, funded by the European Union-Next Generation EU.Bastida-Molina, P.; Hurtado-Perez, E.; Moros Gómez, MC.; Cárcel-Carrasco, J.; Pérez-Navarro, Á. (2022). Energy sustainability evolution in the Mediterranean Countries and synergies from a global energy scenario for the area. Energy. 252:1-22. https://doi.org/10.1016/j.energy.2022.12406712225

    Methodology and Application of Statistical Techniques to Evaluate the Reliability of Electrical Systems Based on the Use of High Variability Generation Sources

    Full text link
    [EN] This study presents a new methodology, based on Monte-Carlo techniques to evaluate the reliability of a carbon-free electricity generation system based on renewable sources; it uses as inputs the variation of the electricity demand and the fluctuations in the renewable supply and provides the renewable system to be installed to guarantee a specific supply reliability level. Additionally, looking for a reduction of this renewable system, the methodology determines the improvements by the incorporation of nuclear power and electricity storage. The methodology is of general application, its implementation being possible under different contexts, such as different time horizons and different future energy scenarios, both for developing, emerging, and developed countries. The only requirement is to have a sufficient database from which to make predictions for future scenarios of electrical generation-demand balances. As an example of practical implementation, the electrical system reliability for the particular case of Spain in 2040 has been forecasted. When considering the fluctuations in solar and wind power contributions, very high values of the installed power from these renewable sources are needed to reach a high reliability of the system. These values decrease substantially if contributions from nuclear and storage technologies are included.Berna-Escriche, C.; Pérez-Navarro, Á.; Escrivá, A.; Hurtado-Perez, E.; Muñoz-Cobo, JL.; Moros, MC. (2021). Methodology and Application of Statistical Techniques to Evaluate the Reliability of Electrical Systems Based on the Use of High Variability Generation Sources. Sustainability. 13(18):1-26. https://doi.org/10.3390/su131810098S126131

    Analyse des impacts économico-environnementaux du changement d usage d un foyer de cuisson traditionnel par un foyer de cuisson amélioré optimisé à charbon de bois dans les ménages de la ville de Kinshasa

    Full text link
    [FR] Le présent travail a consisté à analyser les impacts économiques et environnementaux du changement d¿utilisation dans les ménages de la ville Kinshasa en République démocratique du Congo (RD Congo) du foyer de cuisson traditionnel par un foyer de cuisson amélioré. Nous avons sélectionnés deux foyers de cuisson traditionnels (Traditional cookstove TCS), le TCS D27 et le TCS D23 et deux foyers de cuisson améliorés (Improved cookstove ICS), le ICS 16/8/NC et le ICS 16/8/C. Le test réalisé fut le test de cuisson contrôlée (cooking controlled test CCT), qui est un test de laboratoire dans des conditions strictement contrôlées. Tous les tests furent réalisés en cuisinant un mets local familier populaire, principalement apprécié par les ménages moyens et pauvres de Kinshasa. Pour cuire un repas sec de 1150 g de haricot et 1250 g de riz, il a fallu 2429 g de charbon de bois avec un foyer traditionnel TCS D27 et 1847,4 g avec un foyer traditionnel TCS D23. Mais cela exigeait seulement 1198,7 g de charbon de bois avec un ICS 16/8/NC ou 1081,1 g avec un ICS 16/8/C, ce qui représente des économies en combustible allant de 37% jusqu¿à 55%. Ainsi un ménage de 10 personnes à Kinshasa dépenserait jusqu¿à 48,61 /moispourl¿achatencombustibleavecl¿usaged¿unTCSD27alorsqu¿iln¿aurabesoinquede22,01/mois pour l¿achat en combustible avec l¿usage d¿un TCS D27 alors qu¿il n¿aura besoin que de 22,01 mensuels pour les mêmes tâches culinaires en utilisant un ICS 16/8/C[EN] This study is oriented to the economic and environmental impacts of the substitution in Kinshasa traditional cookstoves by improved clean cookstoves. We selected two traditional cookstoves (TCS), the TCS D27 and the TCS D23 and two improved cookstoves (ICS), the ICS 16/8/NC and the ICS 16/8/C. The test was carried out under the cooking controlled test (CCT) protocol, which is a laboratory test under strictly controlled conditions. All tests were carried out using the meal much preferred by the average and poor households of Kinshasa. To cook a dry meal of 1150g of beans and 1250g of rice, it takes 2429g of charcoal for a traditional cookstove TCS D27 and 1847g for traditional cookstove TCS D23. However, this only requires 1198g of charcoal for an improved cookstove ICS 16/8/NC and 1081g for an improved clean cookstove ICS 16/8/C. This represents fuel savings ranging from 37% to 55%. A household of 10 people in Kinshasa would spend up to 48.61permonthtopurchasefuelwithaTCSD27whileitwillonlyneed 48.61 per month to purchase fuel with a TCS D27 while it will only need 22.01 per month for the same culinary tasks using an ICS 16/8/C.Hurtado, E.; Mulumba-Ilunga, Ó.; Moros Gómez, MC.; Vargas Salgado, CA. (2017). Analyse des impacts économico-environnementaux du changement d usage d un foyer de cuisson traditionnel par un foyer de cuisson amélioré optimisé à charbon de bois dans les ménages de la ville de Kinshasa. Dechets Sciences et Techniques (Online). (75):1-9. https://doi.org/10.4267/dechets-sciences-techniques.3714S197

    Sterilization matters: Consequences of different sterilization techniques on gold nanoparticles

    Get PDF
    Nanoparticles (NPs) can offer many advantages over traditional drug design and delivery, as well as toward medical diagnostics. As with any medical device or pharmaceutical drug intended to be used for in vivo biomedical applications, NPs must be sterile. However, very little is known regarding the effect of sterilization methods on the intrinsic properties and stability of NPs. Herein a detailed analysis of physicochemical properties of two types of AuNPs upon sterilization by means of five different techniques is reported. In addition, cell viability and production of reactive oxygen species are studied. The results indicate that sterilization by ethylene oxide seems to be the most appropriate technique for both types of NPs. It is concluded that it is crucial to test several methods in order to establish the specific type of sterilization to be performed for each particular NP.The authors acknowledge financial support from the Xunta de Galicia (PGIDIT06TMT31402PR), SUDOE (IMMUNONET-SOE1/1P1/E014), and Spanish Ministry of Science and Innovation (Consolider Ingenio 2010, CSD2006-12, NANOBIOMED). Ángela França was supported with a Leonardo da Vinci Fellowship. Jesús Martinez de la Fuente thanks ARAID for financial support.Peer reviewe

    COVID-19 outbreaks in a transmission control scenario: challenges posed by social and leisure activities, and for workers in vulnerable conditions, Spain, early summer 2020

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 community-wide transmission declined in Spain by early May 2020, being replaced by outbreaks and sporadic cases. From mid-June to 2 August, excluding single household outbreaks, 673 outbreaks were notified nationally, 551 active (>6,200 cases) at the time. More than half of these outbreaks and cases coincided with: (i) social (family/friends’ gatherings or leisure venues) and (ii) occupational (mainly involving workers in vulnerable conditions) settings. Control measures were accordingly applied

    Innocampus Explora: Nuevas formas de comunicar ciencia

    Full text link
    [EN] Innocampus Explora aims to show the students of the Burjassot-Paterna campus of the Universitat de València how the different scientific degrees are interrelated. To do this we propose activities in which students and teachers work together to cover the interdisciplinary nature of science, both in everyday and professional issues. Throughout this course the activities developed relate to new ways to communicate science. With the development of this project we contribute to a transversal quality education for all the participating students.[ES] Innocampus Explora tiene por objetivo mostrar a los estudiantes del campus de Burjassot-Paterna de la Universitat de València cómo los diferentes grados científicos están interrelacionados. Para ello proponemos actividades en las que estudiantes y profesores trabajen conjuntamente para abarcar la interdisciplinariedad de la ciencia, tanto en temas cotidianos como profesionales. A lo largo de este curso las actividades desarrolladas se relacionan con las nuevas formas de comunicar ciencia. Con el desarrollo de este proyecto contribuimos a una formación transversal de calidad para todos los estudiantes participantes.Moros Gregorio, J.; Rodrigo Martínez, P.; Torres Piedras, C.; Montoya Martínez, L.; Peña Peña, J.; Pla Díaz, M.; Galarza Jiménez, P.... (2019). Innocampus Explora: Nuevas formas de comunicar ciencia. En IN-RED 2019. V Congreso de Innovación Educativa y Docencia en Red. Editorial Universitat Politècnica de València. 814-823. https://doi.org/10.4995/INRED2019.2019.10449OCS81482

    Multicriteria power generation planning and experimental verification of hybrid renewable energy systems for fast electric vehicle charging stations

    Full text link
    [EN] The installation of fast electric vehicle charging stations (EVCS) will be essential to promote the acceptance by the users of electric vehicles (EVs). However, if EVCS are exclusively supplied by the grid, negative impacts on its stability together with possible CO2 emission increases could be produced. Introduction of hybrid renewable energy systems (HRES) for EVCS can cope with both drawbacks by reducing the load on the grid and generating clean electricity. This paper develops a weighted multicriteria methodology to design the most suitable configuration of HRES for EVCS. This method determines the local renewable resources and the EVCS electricity demand. Then, taking into account environmental, economic and technical aspects, it deduces the most adequate HRES power generation planning for EVCS. Besides, an experimental stage to validate the design deduced from the multicriteria methodology is included. Therefore, the final power generation planning for the HRES in EVCS is supported not only by a complete numerical evaluation, but also by an experimental verification of the demand being fully covered. Methodology application to Valencia (Spain) proves that an off-grid HRES with solar PV, wind and batteries support would be the most suitable configuration for the system. This solution was also experimentally verified. (C) 2021 Elsevier Ltd. All rights reserved.One of the authors (PBM) was supported by the regional public administration of Valencia under the grant ACIF/2018/106Bastida-Molina, P.; Hurtado-Perez, E.; Moros Gómez, MC.; Vargas-Salgado, C. (2021). Multicriteria power generation planning and experimental verification of hybrid renewable energy systems for fast electric vehicle charging stations. Renewable Energy. 179:737-755. https://doi.org/10.1016/j.renene.2021.07.002S73775517

    Assessing transport emissions reduction while increasing electric vehicles and renewable generation levels

    Full text link
    [EN] Electric Vehicles (EVs) appear as an environmental solution for transport sector since they emit zero emissions while driving. Nonetheless, the carbon intensity (CI) of the energy sources involved in the electricity generation system could seriously compromise this solution. Hence, this study proposes a methodology to verify the sustainability of the sector by the introduction of EVs. By means of the "Well-to-Wheel" tool, it compares emissions generated by two fleets: one based on internal combustion engine vehicles (ICEVs) and another one that also contemplates different EVs penetration levels. This methodology develops an iterative process on the contribution of renewable sources to the electricity generation system until a certain level of emissions reduction is achieved. The needed evolution of the CI for the electricity system is therefore deduced. The methodology has been applied to Spain by the mid-term future, given these country policies for both a high penetration of EVs and a progressive introduction of renewable sources in its electricity system. Results indicate that the current Spanish electricity mix allows for a reduction in CO2 emissions by the introduction of EVs, but a 100% renewable system will be needed for reductions up to 74 million tons per year. This research is a first-ever study to relate the forecasted Spanish environmental policies, in terms of urban transport and configuration of the power system, with a sustainable introduction of EVs in the urban fleet. Hence, this paper would be very helpful for policy makers on evaluation of the requirements for a transport fleet electrification.This work was supported in part by the regional public administration of Valencia under the grant ACIF/2018/106.Bastida-Molina, P.; Hurtado-Perez, E.; Peñalvo-López, E.; Moros-Gómez, MC. (2020). Assessing transport emissions reduction while increasing electric vehicles and renewable generation levels. Transportation Research Part D Transport and Environment. 88:1-23. https://doi.org/10.1016/j.trd.2020.102560S12388Acuerdo de París | Acción por el Clima n.d. https://ec.europa.eu/clima/policies/international/negotiations/paris_es (accessed July 7, 2020).Álvarez Fernández, R. (2018). A more realistic approach to electric vehicle contribution to greenhouse gas emissions in the city. Journal of Cleaner Production, 172, 949-959. doi:10.1016/j.jclepro.2017.10.158ANESDOR. Two wheels vehicles sector in Spain 2019. https://www.anesdor.com/wp-content/uploads/2019/02/190121_PPT_RP_Madrid.pdf (accessed January 28, 2020).ANFAC | Annual Report 2018. ANFAC n.d. https://anfac.com/categorias_publicaciones/informe-anual/ (accessed December 5, 2019).Athanasopoulou, L., Bikas, H., Stavropoulos, P., 2018. Comparative Well-to-Wheel Emissions Assessment of Internal Combustion Engine and Battery Electric Vehicles. Procedia CIRP, vol. 78, Elsevier B.V.; 2018, p. 25–30. 10.1016/j.procir.2018.08.169.Bastida-Molina, P., Alfonso-Solar, D., Vargas-Salgado, C., Montuori, L., 2019. Assessing the increase of solar fields in the Iberian Peninsula, 2019. 10.4995/CARPE2019.2019.10205.BOE-A-2019-16856 2019. https://www.boe.es/diario_boe/txt.php?id=BOE-A-2019-16856 (accessed December 12, 2019).Burchart-Korol, D., Jursova, S., Folęga, P., & Pustejovska, P. (2020). Life cycle impact assessment of electric vehicle battery charging in European Union countries. Journal of Cleaner Production, 257, 120476. doi:10.1016/j.jclepro.2020.120476Canals Casals, L., Martinez-Laserna, E., Amante García, B., & Nieto, N. (2016). Sustainability analysis of the electric vehicle use in Europe for CO2 emissions reduction. Journal of Cleaner Production, 127, 425-437. doi:10.1016/j.jclepro.2016.03.120Choi, H., Shin, J., & Woo, J. (2018). Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact. Energy Policy, 121, 13-24. doi:10.1016/j.enpol.2018.06.013Choi, W., & Song, H. H. (2018). Well-to-wheel greenhouse gas emissions of battery electric vehicles in countries dependent on the import of fuels through maritime transportation: A South Korean case study. Applied Energy, 230, 135-147. doi:10.1016/j.apenergy.2018.08.092Clement-Nyns, K., Haesen, E., & Driesen, J. (2010). The Impact of Charging Plug-In Hybrid Electric Vehicles on a Residential Distribution Grid. IEEE Transactions on Power Systems, 25(1), 371-380. doi:10.1109/tpwrs.2009.2036481Dai, Q., Cai, T., Duan, S., & Zhao, F. (2014). Stochastic Modeling and Forecasting of Load Demand for Electric Bus Battery-Swap Station. IEEE Transactions on Power Delivery, 29(4), 1909-1917. doi:10.1109/tpwrd.2014.2308990DGT. Vehicle fleet historical data base 2017. http://www.dgt.es/es/seguridad-vial/estadisticas-e-indicadores/parque-vehiculos/series-historicas/ (accessed January 2, 2019).Dong, X., Wang, B., Yip, H. L., & Chan, Q. N. (2019). CO2 Emission of Electric and Gasoline Vehicles under Various Road Conditions for China, Japan, Europe and World Average—Prediction through Year 2040. Applied Sciences, 9(11), 2295. doi:10.3390/app9112295Driscoll, Á., Lyons, S., Mariuzzo, F., & Tol, R. S. J. (2013). Simulating demand for electric vehicles using revealed preference data. Energy Policy, 62, 686-696. doi:10.1016/j.enpol.2013.07.061Edwards, R. (Jrc/Ies), Larive, J.-F., (Concawe), Mahieu, V. (Jrc/Ies), Rounveirolles, P. (Renault)., 2007. Well-to-Wheels analysis of future automotive fuels and well-to-wheels Report. Europe 2007;Version 2c:88. 10.2788/79018.Ehrenberger, S. I., Dunn, J. B., Jungmeier, G., & Wang, H. (2019). An international dialogue about electric vehicle deployment to bring energy and greenhouse gas benefits through 2030 on a well-to-wheels basis. Transportation Research Part D: Transport and Environment, 74, 245-254. doi:10.1016/j.trd.2019.07.027Evaluación del potencial de energía de la biomasa 2019. https://www.idae.es/uploads/documentos/documentos_11227_e14_biomasa_A_8d51bf1c.pdf (accessed July 8, 2020).Gallet, M., Massier, T., & Hamacher, T. (2018). Estimation of the energy demand of electric buses based on real-world data for large-scale public transport networks. Applied Energy, 230, 344-356. doi:10.1016/j.apenergy.2018.08.086Hass H, Huss A, Maas H. Well-to-Wheels analysis of future automotive fuels and powertrains in the European context: Tank-to-Wheels Appendix 1 - Version 4.a. 2014. 10.2790/95839.He, Y., Song, Z., & Liu, Z. (2019). Fast-charging station deployment for battery electric bus systems considering electricity demand charges. Sustainable Cities and Society, 48, 101530. doi:10.1016/j.scs.2019.101530Hidroeléctrica n.d. https://www.acciona-energia.com/es/areas-de-actividad/otras-tecnologias/hidroelectrica/ (accessed July 8, 2020).Hoekstra, A. (2019). The Underestimated Potential of Battery Electric Vehicles to Reduce Emissions. Joule, 3(6), 1412-1414. doi:10.1016/j.joule.2019.06.002Hu, X., Murgovski, N., Johannesson, L., & Egardt, B. (2013). Energy efficiency analysis of a series plug-in hybrid electric bus with different energy management strategies and battery sizes. Applied Energy, 111, 1001-1009. doi:10.1016/j.apenergy.2013.06.056Huo, H., Cai, H., Zhang, Q., Liu, F., & He, K. (2015). Life-cycle assessment of greenhouse gas and air emissions of electric vehicles: A comparison between China and the U.S. Atmospheric Environment, 108, 107-116. doi:10.1016/j.atmosenv.2015.02.073IDAE. Fuel management guide for road transport fleets 2006. https://www.idae.es/uploads/documentos/documentos_10232_Guia_gestion_combustible_flotas_carretera_06_32bad0b7.pdf (accessed November 14, 2019).INE. Average distance covered by vehicles fleet 2018. http://www.ine.es/jaxi/Tabla.htm?path=/t25/p500/2008/p10/l0/&file=10020.px&L=0 (accessed December 30, 2018).Ingeborgrud, L., & Ryghaug, M. (2019). The role of practical, cognitive and symbolic factors in the successful implementation of battery electric vehicles in Norway. Transportation Research Part A: Policy and Practice, 130, 507-516. doi:10.1016/j.tra.2019.09.045International Energy Agency. Data and statistics 2016. https://www.iea.org/data-and-statistics/data-tables?country=WORLD&energy=Balances&year=2016 (accessed December 12, 2019).Jochem, P., Babrowski, S., & Fichtner, W. (2015). Assessing CO 2 emissions of electric vehicles in Germany in 2030. Transportation Research Part A: Policy and Practice, 78, 68-83. doi:10.1016/j.tra.2015.05.007Ke, W., Zhang, S., He, X., Wu, Y., & Hao, J. (2017). Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress. Applied Energy, 188, 367-377. doi:10.1016/j.apenergy.2016.12.011Kobashi, T., Yoshida, T., Yamagata, Y., Naito, K., Pfenninger, S., Say, K., … Hara, K. (2020). On the potential of «Photovoltaics + Electric vehicles» for deep decarbonization of Kyoto’s power systems: Techno-economic-social considerations. Applied Energy, 275, 115419. doi:10.1016/j.apenergy.2020.115419Limmer, S., & Rodemann, T. (2019). Peak load reduction through dynamic pricing for electric vehicle charging. International Journal of Electrical Power & Energy Systems, 113, 117-128. doi:10.1016/j.ijepes.2019.05.031Liu, Z., Wu, Q., Nielsen, A., & Wang, Y. (2014). Day-Ahead Energy Planning with 100% Electric Vehicle Penetration in the Nordic Region by 2050. Energies, 7(3), 1733-1749. doi:10.3390/en7031733Liu, F., Zhao, F., Liu, Z., & Hao, H. (2018). China’s Electric Vehicle Deployment: Energy and Greenhouse Gas Emission Impacts. Energies, 11(12), 3353. doi:10.3390/en11123353Manjunath, A., & Gross, G. (2017). Towards a meaningful metric for the quantification of GHG emissions of electric vehicles (EVs). Energy Policy, 102, 423-429. doi:10.1016/j.enpol.2016.12.003Mohamed, M., Farag, H., El-Taweel, N., & Ferguson, M. (2017). Simulation of electric buses on a full transit network: Operational feasibility and grid impact analysis. Electric Power Systems Research, 142, 163-175. doi:10.1016/j.epsr.2016.09.032Moro, A., & Helmers, E. (2015). A new hybrid method for reducing the gap between WTW and LCA in the carbon footprint assessment of electric vehicles. The International Journal of Life Cycle Assessment, 22(1), 4-14. doi:10.1007/s11367-015-0954-zMoro, A., & Lonza, L. (2018). Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles. Transportation Research Part D: Transport and Environment, 64, 5-14. doi:10.1016/j.trd.2017.07.012Morrissey, P., Weldon, P., & O’Mahony, M. (2016). Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviour. Energy Policy, 89, 257-270. doi:10.1016/j.enpol.2015.12.001Mutter. (2019). Obduracy and Change in Urban Transport—Understanding Competition Between Sustainable Fuels in Swedish Municipalities. Sustainability, 11(21), 6092. doi:10.3390/su11216092National Integrated Plan about Energy and Climate 2021-2030 | IDAE 2019. https://www.idae.es/informacion-y-publicaciones/plan-nacional-integrado-de-energia-y-clima-pniec-2021-2030 (accessed December 13, 2019).Nationaler Entwicklungsplan Elektromobilität der Bundesregierung. 2009.Onn, C. C., Mohd, N. S., Yuen, C. W., Loo, S. C., Koting, S., Abd Rashid, A. F., … Yusoff, S. (2018). Greenhouse gas emissions associated with electric vehicle charging: The impact of electricity generation mix in a developing country. Transportation Research Part D: Transport and Environment, 64, 15-22. doi:10.1016/j.trd.2017.06.018OPPCharge Common Interface for Automated Charging of Hybrid Electric and Electric Commercial Vehicles 2 nd Edition. 2019.Plan MOVES 2020: ayudas para coches eléctricos y puntos de recarga n.d. https://etecnic.es/noticias/sector/ayudas-subvenciones/plan-moves-2020/ (accessed July 7, 2020).PNIEC. Spanish climate change draft law 2019. https://www.miteco.gob.es/es/prensa/ultimas-noticias/el-consejo-de-ministros-da-luz-verde-al-anteproyecto-de-ley-de-cambio-climático-/tcm:30-487294 (accessed April 12, 2019).Qiao, Q., Zhao, F., Liu, Z., He, X., & Hao, H. (2019). Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle. Energy, 177, 222-233. doi:10.1016/j.energy.2019.04.080REE. Electric mobility guide for local entities 2018. https://www.ree.es/sites/default/files/downloadable/Guia_movilidad_electrica_para_entidades_locales.pdf (accessed July 31, 2019).Régimen de comercio de derechos de emisión de la UE (RCDE UE) | Acción por el Clima n.d. https://ec.europa.eu/clima/policies/ets_es (accessed July 7, 2020).REGLAMENTO (UE) 2019/631 DEL PARLAMENTO EUROPEO n.d. https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=CELEX:32019R0631 (accessed July 9, 2020).Sarker, M. R., Pandzic, H., & Ortega-Vazquez, M. A. (2015). Optimal Operation and Services Scheduling for an Electric Vehicle Battery Swapping Station. IEEE Transactions on Power Systems, 30(2), 901-910. doi:10.1109/tpwrs.2014.2331560Scarinci, R., Zanarini, A., & Bierlaire, M. (2019). Electrification of urban mobility: The case of catenary-free buses. Transport Policy, 80, 39-48. doi:10.1016/j.tranpol.2019.05.006Shafiee, S., Fotuhi-Firuzabad, M., & Rastegar, M. (2013). Investigating the Impacts of Plug-in Hybrid Electric Vehicles on Power Distribution Systems. IEEE Transactions on Smart Grid, 4(3), 1351-1360. doi:10.1109/tsg.2013.2251483Shamshirband, M., Salehi, J., & Gazijahani, F. S. (2018). Decentralized trading of plug-in electric vehicle aggregation agents for optimal energy management of smart renewable penetrated microgrids with the aim of CO2 emission reduction. Journal of Cleaner Production, 200, 622-640. doi:10.1016/j.jclepro.2018.07.315Shen, W., Han, W., & Wallington, T. J. (2014). Current and Future Greenhouse Gas Emissions Associated with Electricity Generation in China: Implications for Electric Vehicles. Environmental Science & Technology, 48(12), 7069-7075. doi:10.1021/es500524eShen, W., Han, W., Wallington, T. J., & Winkler, S. L. (2019). China Electricity Generation Greenhouse Gas Emission Intensity in 2030: Implications for Electric Vehicles. Environmental Science & Technology, 53(10), 6063-6072. doi:10.1021/acs.est.8b05264Spangher, L., Gorman, W., Bauer, G., Xu, Y., Atkinson, C., 2019. Quantifying the impact of U.S. electric vehicle sales on light-duty vehicle fleet CO2 emissions using a novel agent-based simulation. Transp Res Part D Transp Environ 2019;72:358–77. 10.1016/j.trd.2019.05.004.IDAE. Spanish Goverment. UE. Hybrid electric buses introduction in the Transport Fleet Company S.A.M 2019. https://www.idae.es/uploads/documentos/documentos_detalle_proyecto_Autobuses_Malaga_c260fac8.pdf (accessed December 5, 2019).Spanish Nuclear Industry Forum 2019. https://www.foronuclear.org/es/ (accessed March 7, 2020).Su, J., Lie, T. T., & Zamora, R. (2019). Modelling of large-scale electric vehicles charging demand: A New Zealand case study. Electric Power Systems Research, 167, 171-182. doi:10.1016/j.epsr.2018.10.030Teixeira, A. C. R., & Sodré, J. R. (2018). Impacts of replacement of engine powered vehicles by electric vehicles on energy consumption and CO 2 emissions. Transportation Research Part D: Transport and Environment, 59, 375-384. doi:10.1016/j.trd.2018.01.004Turconi, R., Boldrin, A., & Astrup, T. (2013). Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations. Renewable and Sustainable Energy Reviews, 28, 555-565. doi:10.1016/j.rser.2013.08.0132010/75/UE n.d. https://eur-lex.europa.eu/legal-content/ES/TXT/PDF/?uri=CELEX:32010L0075&from=ES (accessed July 7, 2020).Units and conversion factors. Renew. Energy, Elsevier; 2017, p. xxvii–xxix. 10.1016/b978-0-12-804567-1.00017-7.Urban and metropolitan transport in Spain. Spanish Minist Dev 2016. https://www.fomento.gob.es/recursos_mfom/00transporteurbano.pdf (accessed December 16, 2019).van den Broek M, Faaij A, Turkenburg W. Planning for an electricity sector with carbon capture and storage. Case of the Netherlands. Int. J. Greenh. Gas Control 2008;2:105–29. 10.1016/S1750-5836(07)00113-2.Weiss, M., Dekker, P., Moro, A., Scholz, H., & Patel, M. K. (2015). On the electrification of road transportation – A review of the environmental, economic, and social performance of electric two-wheelers. Transportation Research Part D: Transport and Environment, 41, 348-366. doi:10.1016/j.trd.2015.09.007Woo, J., Choi, H., & Ahn, J. (2017). Well-to-wheel analysis of greenhouse gas emissions for electric vehicles based on electricity generation mix: A global perspective. Transportation Research Part D: Transport and Environment, 51, 340-350. doi:10.1016/j.trd.2017.01.005Wu, Z., Guo, F., Polak, J., & Strbac, G. (2019). Evaluating grid-interactive electric bus operation and demand response with load management tariff. Applied Energy, 255, 113798. doi:10.1016/j.apenergy.2019.113798Wu, Y., Yang, Z., Lin, B., Liu, H., Wang, R., Zhou, B., & Hao, J. (2012). Energy consumption and CO2 emission impacts of vehicle electrification in three developed regions of China. Energy Policy, 48, 537-550. doi:10.1016/j.enpol.2012.05.060Wu, Y., & Zhang, L. (2017). Can the development of electric vehicles reduce the emission of air pollutants and greenhouse gases in developing countries? Transportation Research Part D: Transport and Environment, 51, 129-145. doi:10.1016/j.trd.2016.12.007Yang, Y., El Baghdadi, M., Lan, Y., Benomar, Y., Van Mierlo, J., & Hegazy, O. (2018). Design Methodology, Modeling, and Comparative Study of Wireless Power Transfer Systems for Electric Vehicles. Energies, 11(7), 1716. doi:10.3390/en11071716Zhang, X. (2018). Short-Term Load Forecasting for Electric Bus Charging Stations Based on Fuzzy Clustering and Least Squares Support Vector Machine Optimized by Wolf Pack Algorithm. Energies, 11(6), 1449. doi:10.3390/en11061449Zheng, J., Sun, X., Jia, L., & Zhou, Y. (2020). Electric passenger vehicles sales and carbon dioxide emission reduction potential in China’s leading markets. Journal of Cleaner Production, 243, 118607. doi:10.1016/j.jclepro.2019.11860
    corecore