1,480 research outputs found
Validation of Twitter opinion trends with national polling aggregates: Hillary Clinton vs Donald Trump
Measuring and forecasting opinion trends from real-time social media is a
long-standing goal of big-data analytics. Despite its importance, there has
been no conclusive scientific evidence so far that social media activity can
capture the opinion of the general population. Here we develop a method to
infer the opinion of Twitter users regarding the candidates of the 2016 US
Presidential Election by using a combination of statistical physics of complex
networks and machine learning based on hashtags co-occurrence to develop an
in-domain training set approaching 1 million tweets. We investigate the social
networks formed by the interactions among millions of Twitter users and infer
the support of each user to the presidential candidates. The resulting Twitter
trends follow the New York Times National Polling Average, which represents an
aggregate of hundreds of independent traditional polls, with remarkable
accuracy. Moreover, the Twitter opinion trend precedes the aggregated NYT polls
by 10 days, showing that Twitter can be an early signal of global opinion
trends. Our analytics unleash the power of Twitter to uncover social trends
from elections, brands to political movements, and at a fraction of the cost of
national polls
Collective Influence of Multiple Spreaders Evaluated by Tracing Real Information Flow in Large-Scale Social Networks
Identifying the most influential spreaders that maximize information flow is
a central question in network theory. Recently, a scalable method called
"Collective Influence (CI)" has been put forward through collective influence
maximization. In contrast to heuristic methods evaluating nodes' significance
separately, CI method inspects the collective influence of multiple spreaders.
Despite that CI applies to the influence maximization problem in percolation
model, it is still important to examine its efficacy in realistic information
spreading. Here, we examine real-world information flow in various social and
scientific platforms including American Physical Society, Facebook, Twitter and
LiveJournal. Since empirical data cannot be directly mapped to ideal
multi-source spreading, we leverage the behavioral patterns of users extracted
from data to construct "virtual" information spreading processes. Our results
demonstrate that the set of spreaders selected by CI can induce larger scale of
information propagation. Moreover, local measures as the number of connections
or citations are not necessarily the deterministic factors of nodes' importance
in realistic information spreading. This result has significance for rankings
scientists in scientific networks like the APS, where the commonly used number
of citations can be a poor indicator of the collective influence of authors in
the community.Comment: 11 pages, 4 figure
Model of Brain Activation Predicts the Neural Collective Influence Map of the Brain
Efficient complex systems have a modular structure, but modularity does not
guarantee robustness, because efficiency also requires an ingenious interplay
of the interacting modular components. The human brain is the elemental
paradigm of an efficient robust modular system interconnected as a network of
networks (NoN). Understanding the emergence of robustness in such modular
architectures from the interconnections of its parts is a long-standing
challenge that has concerned many scientists. Current models of dependencies in
NoN inspired by the power grid express interactions among modules with fragile
couplings that amplify even small shocks, thus preventing functionality.
Therefore, we introduce a model of NoN to shape the pattern of brain
activations to form a modular environment that is robust. The model predicts
the map of neural collective influencers (NCIs) in the brain, through the
optimization of the influence of the minimal set of essential nodes responsible
for broadcasting information to the whole-brain NoN. Our results suggest new
intervention protocols to control brain activity by targeting influential
neural nodes predicted by network theory.Comment: 18 pages, 5 figure
Data base management system analysis and performance testing with respect to NASA requirements
Several candidate Data Base Management Systems (DBM's) that could support the NASA End-to-End Data System's Integrated Data Base Management System (IDBMS) Project, later rescoped and renamed the Packet Management System (PMS) were evaluated. The candidate DBMS systems which had to run on the Digital Equipment Corporation VAX 11/780 computer system were ORACLE, SEED and RIM. Oracle and RIM are both based on the relational data base model while SEED employs a CODASYL network approach. A single data base application which managed stratospheric temperature profiles was studied. The primary reasons for using this application were an insufficient volume of available PMS-like data, a mandate to use actual rather than simulated data, and the abundance of available temperature profile data
- …