1,480 research outputs found

    Validation of Twitter opinion trends with national polling aggregates: Hillary Clinton vs Donald Trump

    Full text link
    Measuring and forecasting opinion trends from real-time social media is a long-standing goal of big-data analytics. Despite its importance, there has been no conclusive scientific evidence so far that social media activity can capture the opinion of the general population. Here we develop a method to infer the opinion of Twitter users regarding the candidates of the 2016 US Presidential Election by using a combination of statistical physics of complex networks and machine learning based on hashtags co-occurrence to develop an in-domain training set approaching 1 million tweets. We investigate the social networks formed by the interactions among millions of Twitter users and infer the support of each user to the presidential candidates. The resulting Twitter trends follow the New York Times National Polling Average, which represents an aggregate of hundreds of independent traditional polls, with remarkable accuracy. Moreover, the Twitter opinion trend precedes the aggregated NYT polls by 10 days, showing that Twitter can be an early signal of global opinion trends. Our analytics unleash the power of Twitter to uncover social trends from elections, brands to political movements, and at a fraction of the cost of national polls

    Bias of American Politics: Rationing Health Care in a Weak State Political Accountability

    Get PDF

    Collective Influence of Multiple Spreaders Evaluated by Tracing Real Information Flow in Large-Scale Social Networks

    Full text link
    Identifying the most influential spreaders that maximize information flow is a central question in network theory. Recently, a scalable method called "Collective Influence (CI)" has been put forward through collective influence maximization. In contrast to heuristic methods evaluating nodes' significance separately, CI method inspects the collective influence of multiple spreaders. Despite that CI applies to the influence maximization problem in percolation model, it is still important to examine its efficacy in realistic information spreading. Here, we examine real-world information flow in various social and scientific platforms including American Physical Society, Facebook, Twitter and LiveJournal. Since empirical data cannot be directly mapped to ideal multi-source spreading, we leverage the behavioral patterns of users extracted from data to construct "virtual" information spreading processes. Our results demonstrate that the set of spreaders selected by CI can induce larger scale of information propagation. Moreover, local measures as the number of connections or citations are not necessarily the deterministic factors of nodes' importance in realistic information spreading. This result has significance for rankings scientists in scientific networks like the APS, where the commonly used number of citations can be a poor indicator of the collective influence of authors in the community.Comment: 11 pages, 4 figure

    Model of Brain Activation Predicts the Neural Collective Influence Map of the Brain

    Full text link
    Efficient complex systems have a modular structure, but modularity does not guarantee robustness, because efficiency also requires an ingenious interplay of the interacting modular components. The human brain is the elemental paradigm of an efficient robust modular system interconnected as a network of networks (NoN). Understanding the emergence of robustness in such modular architectures from the interconnections of its parts is a long-standing challenge that has concerned many scientists. Current models of dependencies in NoN inspired by the power grid express interactions among modules with fragile couplings that amplify even small shocks, thus preventing functionality. Therefore, we introduce a model of NoN to shape the pattern of brain activations to form a modular environment that is robust. The model predicts the map of neural collective influencers (NCIs) in the brain, through the optimization of the influence of the minimal set of essential nodes responsible for broadcasting information to the whole-brain NoN. Our results suggest new intervention protocols to control brain activity by targeting influential neural nodes predicted by network theory.Comment: 18 pages, 5 figure

    Data base management system analysis and performance testing with respect to NASA requirements

    Get PDF
    Several candidate Data Base Management Systems (DBM's) that could support the NASA End-to-End Data System's Integrated Data Base Management System (IDBMS) Project, later rescoped and renamed the Packet Management System (PMS) were evaluated. The candidate DBMS systems which had to run on the Digital Equipment Corporation VAX 11/780 computer system were ORACLE, SEED and RIM. Oracle and RIM are both based on the relational data base model while SEED employs a CODASYL network approach. A single data base application which managed stratospheric temperature profiles was studied. The primary reasons for using this application were an insufficient volume of available PMS-like data, a mandate to use actual rather than simulated data, and the abundance of available temperature profile data
    • …
    corecore