2 research outputs found

    Detection of gastric Helicobacter species in free-ranging lynx (Lynx lynx) and red foxes (Vulpes vulpes) in Sweden

    No full text
    Specimens of gastric mucosa and liver of 25 free-ranging Eurasian lynx (Lynx lynx), and four red foxes (Vulpes vulpes) shot in Sweden during 1999-2000, were investigated for the presence of Helicobacter species. Histopathology, bacteriologic culture and urease test, Helicobacter genus-specific 16S rDNA PCR analysis, and DNA sequence analysis were applied. Numerous Helicobacter-like organisms were observed histologically in the gastric mucosa of one fox. Helicobacter spp. were detected in the stomach by PCR analysis in 17 (68%) of the lynx and in three (755) of the foxes. Seven of the positive lynx were also positive in the urease test. PCR fragments, amplified from lynx and foxes, were sequenced and compared with those of known Helicobacter species. PCR products from lynx were closely related (>= 98% homology) to H. heilmannii, and PCR fragments from foxes demonstrated close homology to H. heilmannii and H. salomonis. No Helicobacter spp. or Helicobacter-like organisms could be cultured. The PCR analysis of the liver was negative for all animals, The pathologic significance of the presence of Helicobacter spp. in the stomach of free-ranging lynx and foxes remains uncertain

    Widespread episodic thiamine deficiency in Northern Hemisphere wildlife

    No full text
    Many wildlife populations are declining at rates higher than can be explained by known threats to biodiversity. Recently, thiamine (vitamin B-1) deficiency has emerged as a possible contributing cause. Here, thiamine status was systematically investigated in three animal classes: bivalves, ray-finned fishes, and birds. Thiamine diphosphate is required as a cofactor in at least five life-sustaining enzymes that are required for basic cellular metabolism. Analysis of different phosphorylated forms of thiamine, as well as of activities and amount of holoenzyme and apoenzyme forms of thiaminedependent enzymes, revealed episodically occurring thiamine deficiency in all three animal classes. These biochemical effects were also linked to secondary effects on growth, condition, liver size, blood chemistry and composition, histopathology, swimming behaviour and endurance, parasite infestation, and reproduction. It is unlikely that the thiamine deficiency is caused by impaired phosphorylation within the cells. Rather, the results point towards insufficient amounts of thiamine in the food. By investigating a large geographic area, by extending the focus from lethal to sublethal thiamine deficiency, and by linking biochemical alterations to secondary effects, we demonstrate that the problem of thiamine deficiency is considerably more widespread and severe than previously reported
    corecore