79 research outputs found

    Generating brain waves, the power of astrocytes

    Get PDF
    Synchronization of neuronal activity in the brain underlies the emergence of neuronal oscillations termed “brain waves”, which serve various physiological functions and correlate with different behavioral states. It has been postulated that at least ten distinct mechanisms are involved in the formulation of these brain waves, including variations in the concentration of extracellular neurotransmitters and ions, as well as changes in cellular excitability. In this mini review we highlight the contribution of astrocytes, a subtype of glia, in the formation and modulation of brain waves mainly due to their close association with synapses that allows their bidirectional interaction with neurons, and their syncytium-like activity via gap junctions that facilitate communication to distal brain regions through Ca2+ waves. These capabilities allow astrocytes to regulate neuronal excitability via glutamate uptake, gliotransmission and tight control of the extracellular K+ levels via a process termed K+ clearance. Spatio-temporal synchrony of activity across neuronal and astrocytic networks, both locally and distributed across cortical regions, underpins brain states and thereby behavioral states, and it is becoming apparent that astrocytes play an important role in the development and maintenance of neural activity underlying these complex behavioral states

    Neuromodulation of glial function during neurodegeneration

    Get PDF
    Glia, a non-excitable cell type once considered merely as the connective tissue between neurons, is nowadays acknowledged for its essential contribution to multiple physiological processes including learning, memory formation, excitability, synaptic plasticity, ion homeostasis, and energy metabolism. Moreover, as glia are key players in the brain immune system and provide structural and nutritional support for neurons, they are intimately involved in multiple neurological disorders. Recent advances have demonstrated that glial cells, specifically microglia and astroglia, are involved in several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Epilepsy, Parkinson’s disease (PD), Alzheimer’s disease (AD), and frontotemporal dementia (FTD). While there is compelling evidence for glial modulation of synaptic formation and regulation that affect neuronal signal processing and activity, in this manuscript we will review recent findings on neuronal activity that affect glial function, specifically during neurodegenerative disorders. We will discuss the nature of each glial malfunction, its specificity to each disorder, overall contribution to the disease progression and assess its potential as a future therapeutic target

    Neuromodulation of astrocytic K+ clearance

    Get PDF
    Potassium homeostasis is fundamental for brain function. Therefore, effective removal of excessive K+ from the synaptic cleft during neuronal activity is paramount. Astrocytes play a key role in K+ clearance from the extracellular milieu using various mechanisms, including uptake via Kir channels and the Na+-K+ ATPase, and spatial buffering through the astrocytic gap-junction coupled network. Recently we showed that alterations in the concentrations of extracellular potassium ([K+]o) or impairments of the astrocytic clearance mechanism affect the resonance and oscillatory behavior of both the individual and networks of neurons. These results indicate that astrocytes have the potential to modulate neuronal network activity, however, the cellular effectors that may affect the astrocytic K+ clearance process are still unknown. In this study, we have investigated the impact of neuromodulators, which are known to mediate changes in network oscillatory behavior, on the astrocytic clearance process. Our results suggest that while some neuromodulators (5-HT; NA) might affect astrocytic spatial buffering via gap-junctions, others (DA; Histamine) primarily affect the uptake mechanism via Kir channels. These results suggest that neuromodulators can affect network oscillatory activity through parallel activation of both neurons and astrocytes, establishing a synergistic mechanism to maximize the synchronous network activity

    Minocycline treatment reduces mass and force output from fast-twitch mouse muscles and inhibits myosin production in C2C12 myotubes

    Get PDF
    Minocycline, a tetracycline-class of antibiotic, has been tested with mixed effectiveness on neuromuscular disorders such as amyotrophic lateral sclerosis, autoimmune neuritis and muscular dystrophy. The independent effect of minocycline on skeletal muscle force production and signalling remain poorly understood. Our aim here is to investigate the effects of minocycline on muscle mass, force production, myosin heavy chain abundance and protein synthesis. Mice were injected with minocycline (40 mg/kg i.p.) daily for 5 days and sacrificed at day six. Fast-twitch EDL, TA muscles and slow-twitch soleus muscles were dissected out, the TA muscle was snap-frozen and the remaining muscles were attached to force transducer whilst maintained in an organ bath. In C2C12 myotubes, minocycline was applied to the media at a final concentration of 10 µg/mL for 48 h. In minocycline treated mice absolute maximal force was lower in fast-twitch EDL while in slow-twitch soleus there was an increase in the time to peak and relaxation of the twitch. There was no effect of minocycline treatment on the other contractile parameters measured in isolated fast- and slow-twitch muscles. In C2C12 cultured cells, minocycline treatment significantly reduced both myosin heavy chain content and protein synthesis without visible changes to myotube morphology. In the TA muscle there was no significant changes in myosin heavy chain content. These results indicate that high dose minocycline treatment can cause a reduction in maximal isometric force production and mass in fast-twitch EDL and impair protein synthesis during myogenesis in C2C12 cultured cells. These findings have important implications for future studies investigating the efficacy of minocycline treatment in neuromuscular or other muscle-atrophy inducing conditions

    Six weeks of N-acetylcysteine antioxidant in drinking water decreases pathological fiber branching in MDX mouse dystrophic fast-twitch skeletal muscle

    Get PDF
    Introduction: It has been proposed that an increased susceptivity to oxidative stress caused by the absence of the protein dystrophin from the inner surface of the sarcolemma is a trigger of skeletal muscle necrosis in the destructive dystrophin deficient muscular dystrophies. Here we use the mdx mouse model of human Duchenne Muscular Dystrophy to test the hypothesis that adding the antioxidant NAC at 2% to drinking water for six weeks will treat the inflammatory phase of the dystrophic process and reduce pathological muscle fiber branching and splitting resulting in a reduction of mass in mdx fast-twitch EDL muscles. Methods: Animal weight and water intake was recorded during the six weeks when 2% NAC was added to the drinking water. Post NAC treatment animals were euthanised and the EDL muscles dissected out and placed in an organ bath where the muscle was attached to a force transducer to measure contractile properties and susceptibility to force loss from eccentric contractions. After the contractile measurements had been made the EDL muscle was blotted and weighed. In order to assess the degree of pathological fiber branching mdx EDL muscles were treated with collagenase to release single fibers. For counting and morphological analysis single EDL mdx skeletal muscle fibers were viewed under high magnification on an inverted microscope. Results: During the six-week treatment phase NAC reduced body weight gain in three- to nine-week-old mdx and littermate control mice without effecting fluid intake. NAC treatment also significantly reduced the mdx EDL muscle mass and abnormal fiber branching and splitting. Discussion: We propose chronic NAC treatment reduces the inflammatory response and degenerative cycles in the mdx dystrophic EDL muscles resulting in a reduction in the number of complexed branched fibers reported to be responsible for the dystrophic EDL muscle hypertrophy

    Astrocytic K+ clearance during disease progression in amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder in which patients lose motor functions due to progressive loss of motor neurons in the cortex, brainstem, and spinal cord. Whilst the loss of neurons is central to the disease, it is becoming clear that glia, specifically astrocytes, contribute to the onset and progression of neurodegeneration. Astrocytes play an important role in maintaining ion homeostasis in the extracellular milieu and regulate multiple brain functions by altering their extracellular concentrations. In this study, we have investigated the ability of astrocytes to maintain K+ homeostasis in the brain via direct measurement of the astrocytic K+ clearance rate in the motor and somatosensory cortices of an ALS mouse model (SOD1G93A). Using electrophysiological recordings from acute brain slices, we show region-specific alterations in the K+ clearance rate, which was significantly reduced in the primary motor cortex but not the somatosensory cortex. This decrease was accompanied by significant changes in astrocytic morphology, impaired conductivity via Kir4.1 channels and low coupling ratio in astrocytic networks in the motor cortex, which affected their ability to form the K+ gradient needed to disperse K+ through the astrocytic syncytium. These findings indicate that the supportive function astrocytes typically provide to motoneurons is diminished during disease progression and provides a potential explanation for the increased vulnerability of motoneurons in ALS

    Detection of retinal and blood Aβ oligomers with nanobodies

    Get PDF
    Introduction: Abnormal retinal changes are increasingly recognized as an early pathological change in Alzheimer’s disease (AD). Although amyloid beta oligomers (Aβo) have been shown to accumulate in the blood and retina of AD patients and animals, it is not known whether the early Aβo deposition precedes their accumulation in brain. Methods and results: Using nanobodies targeting Aβ1-40 and Aβ1-42 oligomers we were able to detect Aβ oligomers in the retina and blood but not in the brain of 3-month-old APP/PS1 mice. Furthermore, Aβ plaques were detected in the brain but not the retina of 3-month-old APP/PS1 mice. Conclusion: These results suggest that retinal accumulation of Aβo originates from peripheral blood and precedes cognitive decline and Aβo deposition in the brain. This provides a very strong basis to develop and implement an “eye test” for early detection of AD using nanobodies targeting retinal Aβ

    Implantation of episcleral electrodes via anterior orbitotomy for stimulation of the retina with induced photoreceptor degeneration : an in vivo feasibility study on a conceptual visual prosthesis

    No full text
    Background. A visual prosthesis is a conceptual device designed to harnesses the function of residual afferent neurons in the visual pathway to produce artificial vision. Such implant, when applied to stimulate the vitreous surface of the retina, has proven feasible in producing the perception of light in both animals and humans. However the practicality of such device has been challenged by the difficulty of surgical access and the risks of damaging the neuroretina. Positioning a visual implant over the scleral surface of the eye could present a safer alternative but this stimulation modality has not been tested in diseased retinas and little is known about the altered electrophysiological properties of the retina in influencing the feasibility of such approach. Methods. Experimental photoreceptor degeneration was induced in four pigmented rabbit eyes with systematic administration of a retinotoxic agent, sodium iodate. A multielectrode array was implanted onto the surface of the sclera to target the central and peripheral parts of the retina via an anterior orbitotomy approach. The efficacy of retinal stimulation was assessed by recording electrical evoked potential over the primary visual cortex. Findings. The electrical evoked potentials were obtained from both injected and control eyes. The charge density thresholds were found to be similar in both groups and were below the bioelectric safety limit. Spatially differentiated cortical activation profiles were obtained from the central and peripheral retina and the pattern of activation corresponded to the retinotopography of the rabbit primary visual cortex. Conclusion. This study proves that episcleral stimulation of the retina is a feasible alternative to intraocular approaches for the development of a visual prosthesis for retinas with photoreceptor loss

    Suppression of visual cortical evoked responses following deprivation of pattern vision in adult mice

    No full text
    The effect of visual loss on the adult neocortex can have significant impact on the success of a visual implant. Recent research has shown that the adult neocortex retains substantial plasticity following a disruption to its afferent input. The result of these changes may hamper the development of a visual prosthesis if visual sensation cannot be effectively restored by stimulation of the surviving elements of the visual pathway. In order to evaluate further the visual performance of the mammalian adult brain following visual loss, especially the dominant form of blindness in humans, namely loss of pattern vision, we examined the cortical evoked potential of adult mice following 7, 30 and 120 days of visual deprivation via bilateral eyelid suture. Cortical potentials were elicited with a flash visual stimulus or by electrical stimulation of the retina. We found that after 7 days deprivation there was a potentiation of the evoked response while at 30 and 120 days deprivation the visual evoked responses were significantly reduced. Increasing the visual stimulus intensity reduced the effects. The electrical evoked potential demonstrated a corresponding reduction in stimulus threshold at 7 days and a corresponding rise (40-50%) after 30 and 120 days. These findings suggest that the adult brain exhibited significant experience-dependent modifications following visual loss, and the impact depended on the duration of deprivation. Such reduction in visual responsiveness, especially with electrical activation, will need to be taken into account in the development of a visual implant

    In vivo evaluation of an episcleral multielectrode array for stimulation of the retina with reduced retinal ganglion cell mass

    No full text
    A visual prosthesis is an experimental device designed to activate residual functional neurons in the visual pathway to generate artificial vision for blind patients. Specifically, for photoreceptor disease, a microelectrode array applied to the surface of the sclera could potentially serve to stimulate the remaining interneurons in the retina to produce topographically mapped visual percepts. However, of those neurons spared in the disease process, the retinal ganglion cells (RGC), which represent the final output neurons of the retina, can be markedly reduced in number. Using an albino rabbit model with RGC deficits, acute recording of cortical electrical evoked potential was performed to ascertain whether such a stimulation strategy is feasible. By analyzing the strength-duration curve (current threshold vs. pulse duration) and cortical activation profiles, our results prove that bioelectrically safe and spatially differentiated stimulation of the retina is feasible notwithstanding the condition of markedly reduced RGC counts
    corecore