10 research outputs found

    Development of high performance, ultralow-noise VECSELs for optical lattice clocks

    Get PDF
    The development of high performance and stable lasers with ultra-low noise is critical for further advancement of quantum technologies, such as optical lattice clocks and atom interferometers In addition, as several lasers with different wavelength, brightness, and linewidth are required for such quantum systems, lasers are the major factor in not only the bulkiness and complexity of the technology but also the overall efficiency. Here, we present progress on the development of compact, ultra-low-noise, narrow-linewidth AlGaInP-based VECSELs with direct emission at 689 and 698 nm, of interest for neutral strontium optical clocks

    Sub-kHz-linewidth VECSELs for cold atom experiments

    Get PDF
    We report and characterize sub-kHz linewidth operation of an AlGaInP-based VECSEL system suitable for addressing the narrow cooling transition of neutral strontium atoms at 689 nm. When frequency-stabilized to a standard air-spaced Fabry-Perot cavity (finesse 1000) via the Pound-Drever-Hall (PDH) technique, it delivers output power >150 mW in a circularly-symmetric single transverse mode with low frequency and intensity noise. The optical field was reconstructed from the frequency noise error signal via autocorrelation and the Wiener-Khintchine theorem, leading to an estimated linewidth of (125±2) Hz. Optical beat note measurements were performed against a commercial locked laser system and a second, almost identical, VECSEL system resulting in linewidths of 200 Hz and 160 Hz FWHM, respectively. To the best of our knowledge, this is the first demonstration of a VECSEL compatible with the narrowest of lines (few hundred Hz) used for cooling and trapping atoms and ions

    Monolithic VECSEL for stable kHz linewidth

    Get PDF
    Vertical-external-cavity surface-emitting semiconductor lasers (VECSELs) are of increasing interest for applications requiring ultra-coherence and/or low noise at novel wavelengths; performance that is currently achieved via high-Q, air-spaced resonators to achieve long intra-cavity photon lifetimes (for the so-called class-A low noise regime), power scaling and high beam quality. Here, we report on the development of a compact, electronically tunable, monolithic-cavity, class-A VECSEL (monolithic VECSEL) for ultra-narrow free-running linewidths. A multi-quantum-well, resonant periodic gain structure with integrated distributed Bragg reflector (DBR) was optically-bonded to an air-gap-free laser resonator created inside a right-angle fused-silica prism to suppress the influence of environmental noise on the external laser oscillation, thus achieving high stability. Mode-hop-free wavelength tuning is performed via the stabilized temperature; or electronically, and with low latency, via a shear piezo-electric transducer mounted on the top of the prism. The free-running linewidth, estimated via the frequency power spectral density (PSD), is sub-kHz over ms timescales and <1.9 kHz for time sampling as long as 1s, demonstrating at least two orders-of-magnitude improvement in noise performance compared to previously reported single frequency VECSELs. The stable, total internal reflection resonator concept is akin to the prevalent monolithic non-planar ring oscillator (NPRO), however the monolithic VECSEL has several important advantages: tailored emission wavelength (via semiconductor bandgap engineering), no relaxation oscillations, no applied magnetic field, and low requirements on the pump beam quality. This approach is power-scalable in principle and could be applied to VECSELs at any of the wavelengths from the visible to the mid-infrared at which they are already available, to create a range of robust, ultra-coherent laser systems with reduced bulkiness and complexity. This is of particular interest for remote metrology and the translation of quantum technologies, such as optical clocks, from research laboratories into real world applications

    Single-frequency optical parametric oscillator intracavity-pumped by a visible VECSEL for low-noise down-conversion to 1.55 µm

    Get PDF
    We report, to the best of our knowledge, the first optical parametric oscillator (OPO) pumped by a visible AlGaInP-based vertical-external-cavity surface-emitting laser (VECSEL). Tunable emission over 1155–1300 nm in the signal and 1474–1718 nm in the idler are observed by temperature adjustment of a 40 mm-long 5%-MgO:PPLN crystal intracavity-pumped at 690 nm. When optimized for low oscillation threshold, and by implementing resonant idler output-coupling (TOC = 1.7%), extracted output powers of 26.2 mW (signal) and 5.6 mW (idler; one-way) are measured, corresponding to a total down-conversion efficiency and extraction efficiency of 70.2% and 43%, respectively. Further, a total down-conversion efficiency of 72.1% is achieved in the absence of idler output-coupling. Of particular interest for high-precision applications, including quantum optics experiments and squeezed light generation, high stability and single-frequency operation are also demonstrated. We measure RMS stabilities of 0.4%, 1.8% and 2.3% for the VECSEL fundamental, signal and idler, with (resolution-limited) frequency linewidths of 2.5 MHz (VECSEL) and 7.5 MHz (signal and idler)

    Superradiance pulse manipulation via atomic interactions

    No full text
    O fenômeno da superradiância é caracterizado por um processo de ordenamento das transições dos dipolos atômicos em amostras excitadas, moderadamente densas, decorrente das correlações induzidas entre os átomos desenvolvidas pela radiação coerente emitida pelos próprios átomos. O processo superradiante que é iniciado a partir de uma total desordem em t = 0 atinge um ordenamento máximo em um tempo &tau; &alpha; N-1, gerando um pulso de radiação de intensidade seguindo a lei do sech2 e com pico proporcional à N2, e em seguida os dipolos relaxam para um equilíbrio desordenado. Neste trabalho, tratamos a interação de dois modos de uma cavidade, &omega;a e &omega;b, e uma amplificação, com um sistema de N átomos de dois níveis, com frequência de transição atômica &omega;0 de forma que interaja ressonantemente com &omega;a e dispersivamente com &omega;b, responsável pelo acoplamento entre os átomos. Para enterdemos como a lei do sech2 será afetada pela interação direta entre os átomos, utilizamos o método das perturbações via de pequenas rotações não-lineares para obtermos o hamiltoniano efetivo do sistema com uma forma mais explícita da interação dipolar entre os átomos. Por fim, após escrevermos a equação mestra do sistema, utilizamos a aproximação de campo médio e o método dos invariantes de Lewis-Riesenfeld para chegar aos principais aspectos deste fenômeno no sistema.The superradiant phenomena is characterized by atomic dipoles ordering process in excited samples moderately denses, that occours due to the atomic induced correlations developed not directly but by the coherent radiation emitted by atoms themselves. The superradiant process evolves from a total disorder at t = 0, attain a maximum order in a time &tau; &alpha; N-1 creating a radiation pulse whose intensity follows the sech2 law and its peak is proportional to N2, thereafter the dipoles relax to a disordered equilibrium state. In this essay, we deal with the interaction between two cavity modes &omega;a and &omega;b and a classical pump with a system of N two-level atoms, whose atomic transition frequencies &omega;0. We consider a resonant interaction between atoms and mode &omega;a and a dispersive coupling of atoms with mode &omega;b, which couple the atomic sample, and the classical pump. In order to obtain how sech2 law changes, we use the method of nonlinear small rotations to obtain effective Hamiltonian, expliciting dipolar interaction between atoms. Finally, after write the effective master equation, we use the mean-field approximation and Lewis and Riesenfeld method to obtain the mean features of this phenomena to our system

    Efeitos coletivos em espalhamento de luz de nuvens frias de estrôncio

    No full text
    A cold atomic cloud is a versatile object, because it offers many handles to control and tune its properties. This facilitates studies of its behavior in various circumstances, such as sample temperature, size and density, composition, dimensionality and coherence time. The range of possible experiments is constrained by the specifications of the atomic species used. In this thesis presents the work done in the experiment for laser cooling of strontium atoms, focusing on its stability, which should provide cold and ultracold samples for the study of collective effects in light scattering. From the initial apparatus, innumerous changes were performed. The vacuum system got improved and now reached lower ultra high vacuum due to the pre-baking done to its parts and adding a titanium-sublimation stage. The quadrupole trap were improved by the design and construction of a new pair of coils. The stability of the blue, green and red laser systems and the loss prevention of laser light were improved, giving rise to a robust apparatus. Another important point is the development of homemade devices to reduce the costs and to be used as a monitor of different parts of an cold atoms experiment. From this homemade devices, we could demonstrate a dramatic linewidth narrowing by injection lock of an low cost 461 nm diode laser and its application to our strontium experiment. In the end, this improved experimental apparatus made possible the study of a new scattering effect, the mirror assisted coherent back-scattering (mCBS).Uma nuvem atômica fria é um objeto versátil porque oferece muitas formas de controlar e ajustar suas propriedades. Isso facilita o estudo de seu comportamento em várias circunstâncias, tais como temperatura da amostra, tamanho e densidade, composição, dimensionalidade e tempo de coerência. A extensão de experimentos possíveis é limitada pelas especificações da espécie atômica utilizada. Nessa tese, eu apresento o trabalho feito em um experimento para resfriamento de átomos de estrôncio, focando em sua estabilidade, que deve gerar amostras frias e ultras-frias para o estudo de efeitos coletivos em espalhamento de luz. Do aparato inicial, inúmeras mudanças foram feitas. O sistema de vácuo foi melhorado e agora atinge vácuos ultra altos mais baixos, devido ao pré-cozimento feito em suas partes e a adição de um estágio de sublimação de titânio. A estabilidade e a prevenção de perdas de luz dos sistemas de laser azul, verde e vermelho foram melhorados, levando a um sistema mais robusto. Outro ponto importante é o desenvolvimento de dispositivos caseiros para reduzir os custos e para ser usado como monitor de diferentes partes de um experimento de átomos frios. Destes dispositivos, pudemos demonstrar a redução dramática da largura de linha de um diodo laser de 461 nm de baixo custo devido a estabilização por injeção. No fim, esse aparato experimental melhorado fez possível o estudo de um novo efeito de espalhamento, o retro espalhamento coerente da luz assistido por espelho

    Superradiance pulse manipulation via atomic interactions

    No full text
    O fenômeno da superradiância é caracterizado por um processo de ordenamento das transições dos dipolos atômicos em amostras excitadas, moderadamente densas, decorrente das correlações induzidas entre os átomos desenvolvidas pela radiação coerente emitida pelos próprios átomos. O processo superradiante que é iniciado a partir de uma total desordem em t = 0 atinge um ordenamento máximo em um tempo &tau; &alpha; N-1, gerando um pulso de radiação de intensidade seguindo a lei do sech2 e com pico proporcional à N2, e em seguida os dipolos relaxam para um equilíbrio desordenado. Neste trabalho, tratamos a interação de dois modos de uma cavidade, &omega;a e &omega;b, e uma amplificação, com um sistema de N átomos de dois níveis, com frequência de transição atômica &omega;0 de forma que interaja ressonantemente com &omega;a e dispersivamente com &omega;b, responsável pelo acoplamento entre os átomos. Para enterdemos como a lei do sech2 será afetada pela interação direta entre os átomos, utilizamos o método das perturbações via de pequenas rotações não-lineares para obtermos o hamiltoniano efetivo do sistema com uma forma mais explícita da interação dipolar entre os átomos. Por fim, após escrevermos a equação mestra do sistema, utilizamos a aproximação de campo médio e o método dos invariantes de Lewis-Riesenfeld para chegar aos principais aspectos deste fenômeno no sistema.The superradiant phenomena is characterized by atomic dipoles ordering process in excited samples moderately denses, that occours due to the atomic induced correlations developed not directly but by the coherent radiation emitted by atoms themselves. The superradiant process evolves from a total disorder at t = 0, attain a maximum order in a time &tau; &alpha; N-1 creating a radiation pulse whose intensity follows the sech2 law and its peak is proportional to N2, thereafter the dipoles relax to a disordered equilibrium state. In this essay, we deal with the interaction between two cavity modes &omega;a and &omega;b and a classical pump with a system of N two-level atoms, whose atomic transition frequencies &omega;0. We consider a resonant interaction between atoms and mode &omega;a and a dispersive coupling of atoms with mode &omega;b, which couple the atomic sample, and the classical pump. In order to obtain how sech2 law changes, we use the method of nonlinear small rotations to obtain effective Hamiltonian, expliciting dipolar interaction between atoms. Finally, after write the effective master equation, we use the mean-field approximation and Lewis and Riesenfeld method to obtain the mean features of this phenomena to our system

    Low phase noise operation of a cavity-stabilized 698 nm AlGaInP-based VECSEL

    No full text
    We report for the first time a high performance, single frequency AlGaInP-based VECSEL (vertical-external-cavity surface-emitting-laser) with emission at 698 nm, targeting the clock transition of neutral strontium atoms. Furthermore, we present comprehensive noise characterization of this class-A semiconductor laser, including the residual fast phase noise in addition to the frequency and relative intensity noise. The low noise VECSEL has output power at around 135 mW with an estimated linewidth of 115 Hz when frequency stabilized via the Pound-Drever-Hall (PDH) technique to a high finesse reference cavity, without intermediate stabilization. The phase noise is measured to be below -126 dBc/Hz for frequencies between 10 kHz and 15 MHz with a total integrated phase noise of 3.2 mrad, suitable not only for ultra-cold neutral strontium-based quantum technologies, such as optical clocks, but also with potential for atom-interferometry applications

    Single-frequency optical parametric oscillator intracavity-pumped by a visible VECSEL for low-noise down-conversion to 1.55 μm

    No full text
    We report, to the best of our knowledge, the first optical parametric oscillator (OPO) pumped by a visible AlGaInP-based vertical-external-cavity surface-emitting laser (VECSEL). Tunable emission over 1155-1300 nm in the signal and 1474-1718 nm in the idler are observed by temperature adjustment of a 40 mm-long 5%-MgO:PPLN crystal intracavity-pumped at 690 nm. When optimized for low oscillation threshold, and by implementing resonant idler output-coupling (TOC = 1.7%), extracted output powers of 26.2 mW (signal) and 5.6 mW (idler; one-way) are measured, corresponding to a total down-conversion efficiency and extraction efficiency of 70.2% and 43%, respectively. Further, a total down-conversion efficiency of 72.1% is achieved in the absence of idler output-coupling. Of particular interest for high-precision applications, including quantum optics experiments and squeezed light generation, high stability and single-frequency operation are also demonstrated. We measure RMS stabilities of 0.4%, 1.8% and 2.3% for the VECSEL fundamental, signal and idler, with (resolution-limited) frequency linewidths of 2.5 MHz (VECSEL) and 7.5 MHz (signal and idler)
    corecore