36 research outputs found

    Case report: Cerebellar swelling and hydrocephalus in familial hemophagocytic lymphohistiocytosis

    Get PDF
    Familial hemophagocytic lymphohistiocytosis (FHL) is a severe inborn error of immunity caused by a genetic defect that impairs the function of cytotoxic T and NK cells. There are only a few reported cases of FHL with diffuse swelling of the cerebellum and obstructive hydrocephalus. We report a case of FHL3 with neurological symptoms associated with cerebellar swelling and obstructive hydrocephalus. A male patient was hospitalized several times due to fever and decreased feeding, hepatosplenomegaly, and cytopenia since the first month of life. At 7 months of age, disturbance of consciousness was seen. Brain magnetic resonance imaging revealed signal intensity in the bilateral cerebellar hemispheres, diffusely increased periventricular white matter, and ventriculomegaly. Although he was treated with methylprednisolone pulse therapy, he was unresponsive to the treatment. He was then transferred to a local hospital after tracheotomy but died. Targeted clinical sequencing revealed a homozygous splice-site mutation in UNC13D. Pediatric hemophagocytic lymphohistiocytosis (HLH) includes some cases of central nervous symptom (CNS)-isolated HLH or CNS HLH preceding systemic lesions, which often do not initially meet the diagnostic criteria for FHL. Patients with FHL initiated by cerebellar symptoms may present with an atypical clinical course for HLH, leading to delayed diagnosis and poor outcomes. Despite the usefulness of a combination of a high percentage of lymphocytes in the peripheral leukocytes, a low lactate dehydrogenase level, and a high sIL-2R/ferritin ratio for identifying FHL, the diagnosis may be missed due to the absence of these results. Presymptomatic diagnosis of FHL by screening of newborns and subsequent early treatment of patients with a predicted poor prognosis may contribute to better outcomes

    A partial form of inherited human USP18 deficiency underlies infection and inflammation

    Get PDF
    International audienceHuman USP18 is an interferon (IFN)-stimulated gene product and a negative regulator of type I IFN (IFN-I) signaling. It also removes covalently linked ISG15 from proteins, in a process called deISGylation. In turn, ISG15 prevents USP18 from being degraded by the proteasome. Autosomal recessive complete USP18 deficiency is life-threatening in infancy owing to uncontrolled IFN-I–mediated autoinflammation. We report three Moroccan siblings with autoinflammation and mycobacterial disease who are homozygous for a new USP18 variant. We demonstrate that the mutant USP18 (p.I60N) is normally stabilized by ISG15 and efficient for deISGylation but interacts poorly with the receptor-anchoring STAT2 and is impaired in negative regulation of IFN-I signaling. We also show that IFN-γ–dependent induction of IL-12 and IL-23 is reduced owing to IFN-I–mediated impairment of myeloid cells to produce both cytokines. Thus, insufficient negative regulation of IFN-I signaling by USP18-I60N underlies a specific type I interferonopathy, which impairs IL-12 and IL-23 production by myeloid cells, thereby explaining predisposition to mycobacterial disease

    Development of a Multi-Step Leukemogenesis Model of MLL-Rearranged Leukemia Using Humanized Mice

    Get PDF
    Mixed-lineage-leukemia (MLL) fusion oncogenes are intimately involved in acute leukemia and secondary therapy-related acute leukemia. To understand MLL-rearranged leukemia, several murine models for this disease have been established. However, the mouse leukemia derived from mouse hematopoietic stem cells (HSCs) may not be fully comparable with human leukemia. Here we developed a humanized mouse model for human leukemia by transplanting human cord blood-derived HSCs transduced with an MLL-AF10 oncogene into a supra-immunodeficient mouse strain, NOD/Shi-scid, IL-2Rγ−/− (NOG) mice. Injection of the MLL-AF10-transduced HSCs into the liver of NOG mice enhanced multilineage hematopoiesis, but did not induce leukemia. Because active mutations in ras genes are often found in MLL-related leukemia, we next transduced the gene for a constitutively active form of K-ras along with the MLL-AF10 oncogene. Eight weeks after transplantation, all the recipient mice had developed acute monoblastic leukemia (the M5 phenotype in French-American-British classification). We thus successfully established a human MLL-rearranged leukemia that was derived in vivo from human HSCs. In addition, since the enforced expression of the mutant K-ras alone was insufficient to induce leukemia, the present model may also be a useful experimental platform for the multi-step leukemogenesis model of human leukemia

    the IL1RN Mutation Creating the Most-Upstream Premature Stop Codon Is Hypomorphic because of a Reinitiation of Translation (vol 37, pg 158, 2020)

    No full text
    WOS: 000530191800001PubMed: 32367426The original version of our manuscript, entitled, " the IL1RN mutation creating the most-upstream premature stop codon is hypomorphic because of a reinitiation of translation" unfortunately contained mistakes in Fig. 1a and d legends. the text should read as follows
    corecore