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Logic Interface System on CODASYL Database SYSTEM

R | e Al REOE
Makoto Takizawa*, Hideaki Itoh**, and Kunihiko Moriya*¥*

*Faculty of Science and Engineering, Tokyo Denki University
r 1ng Yy
**Japan Information Processing Development Center

Abstract

This paper presents the design and implementation of logic
language interface on the conventional CODASYL database system.
First, we define a formal system of logical aspect of the
CODASYL model based on the first-order theory. 'Second, we make
clear the semantics of conventional CODASYL data manipulation
language (DML) by defining an abstract machine called a VNM.
Then, we show a resolution called a navigational (NV) resolution
in which meaningless backtrackings are removed. In the NV reso-
lution, the CODASYL database system is accessed in an interpre-
tive manner, because the CODASYL model provides
navigational (record-at-a-time) langyuage DML and resolution is
principally based on seqguential access.

1. Introduction

Recent computer systems. provide various database management
systems (DBMS's) which play a central role of various applica-
tions. We have now two typical types of commercial DBMS's, i.e.
relational [CODD78] and network[CODA73] ones. The relational
ones provide non-procedural languayges on logical data_ structure
and are used for ad hoc applications like CAD and personal data-
bases. The network ones provide procedural, navigational
languages on mixed data structure of 1logical and physical
aspects, and are used for commercial databases because they pro-
vide -high performance. At present, intelligent non-procedural
interfaces on existing CODASYL database systems are needed for
supporting ad hoc applications. In addition to the conventional
DML interface, the CODASYL database systems can provide non-
procedural relational interfaces [TAKIS®H, DAYAB2]. Logic
languages like Prolog{KOWA79] provide more descriptive power,
-i.e. recursive and non-deterministic view definitions, but rela-
tional languages like SQL[DATE81l] can provide only non-recursive
and deterministic definitions of views. Logic interfaces on the
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relational databases have been discussed by [CHAN81l, LID84,
OHSU8B3, etc.].

In this paper, we present logic language interface on
existing CODASYL database systems. First, we separate the con-
ventional CODASYL model into logical and physical models. For.
the logical one, we define a formal system based on the first-
order theory. For the physical one, we make clear the semantics
of conventional DML by defining an abstract machine called a
VNM. Then, we propose a new refutation procedure called a navi-
gational refutation (NVR) procedure which avoids meaningless
backtracking and in which the CODASYL database 1is accessed
interpretively by using the DML's.

In chapter 2, we define a formal system called a conceptual

network system(CNS) and define the semantics of DML. 1In chapter
3, we present our NV refutation procedure.

2. CODASYL Model

In the conventional CODASYL model[CODA73, OLLE78}, both
physical and logical aspects are mixed. In order to put the
logic interface on the CODASYL - database system, both -aspects
have to be explicitly separated.

2.1. Conceptual Network Data Structure

By abstracting the loyical aspect from the CODASYL data
structure, we define a conceptual network data structure N con-
posed of sets and partial functions on these sets. N is a pair
of a schema S which is a time-invariant, logical data structure,
and a database which is a set of time-~variant data. ,The schema
is composed of record(R)-types and set(S)-types. An R-type A is
a set of items {@a, ¢tl,..., tm} (m>Y), where @A is a
database(db)-key and ti a data item(i=l,...,m). For every item
t in A, let dom(t) denote its domain. A record occurrence (RO)-
set A for A is A c dom(@A)x dom(tl)x...x dom(tm). Each a € A is
a record(R)-occurrence. For each item t, let t(a) denote t's
value of a.. Every a in A has a different value (@A(a).

When a partial function from an RO-set A to B exists, a
set(S)-type C =(A, B) is defined. Here, A is an owner and B a
member. Also, A and E are distinct. A set occurrence (SO0)~-set C
for C is defined as C cA x B, which is a partial function C:A-
>B. FEach element <a,b> 1n C is an S occurrence.

A collection of RO-sets and SO-sets is a conceptual network
database (CDB) . Fig. 1 shows an example of a graph representa-
tion of a conceptual network schema  on information of



259

departments D, employees E, and projects P, where boxes D, E, P,
EPL represent R~types and arcs DE, PE, and EP S-types.

- - . o o - -

- - - n - o -

. o o o -~ - B e e e

Fig. 1 Conceptual network schema.

2.2. Conceptual Hetwork System

Based on the conceptual network data structure, we define a
formal system named a conceptual network system(CNS) as a qua-
druple <S8, L, G, N> where S is a conceptual network schema, L a
language, G axioms, and N inference rules. L for § is a first-
order language[ENDE72] named a conceptual network language (CNL),
whose symbol set A includes four kinds of predicate symbols,
i.,e. T, S, R, and V ones. For every item, R-type, and S-type in
S, L includes a T-, R-, and S-predicate symbol, respectively.
Other predicate symbols are V-types. Terms and well-formed
formulas(wffs) are defined in the same way as [ENDE72].

Now, an interpretation I.of L is a pair <D, M>. D 1is a
universe. M is a mapping from the symbol set A where, for each
constant a, M{(a) € D, for each n~ary function symbol f, M(f):D"
->D, and for every n-ary predicate symbol P, M(P)cD. Here, let
u, A, C be T, R, S symbols, respectively. M(U) denotes a domain
of item, #M(A) an RO-set, and M(C) an SO~set. A collection of
M(E) for every T or R symbol E is a conceptual network
database (CDB). Satisfiability of wff W, i.e. =W, is the same as
[ENDE72].

The set G of axioms contains the following nonlogical
axioms.

(1) For‘every (m+l)~ary R-symbol A for R-type A =(@€A,Il,...,Im),

¥k ¥xl... ¥xm 7
( A(k,x1l,...,xm)~=> @A(k) and I1l(xl) and ... and Im(xm)).

¥k ¥xl... ¥xm ¥yl... ¥ym ( A(k,x1l,...,xm) and
A(k,yl,...,yn) => (xl=yl) and...and (xm=ym)).
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(2) For every S-symbol C for S-type C =(A, B),
vk ¥vh ( C( k, h) -> @Aa(k) and @B(h)).

vk ¥h xl... xn yl... ym
( ¢C( k, h) -> A(k,x1l,...,%xn) and B(h,yl,...,ym)).

¥k ¥h ¥j ( C(k,h) and C(j,h) -> k=3j).
[KOBA85] also gives more general axioms for various data models,

Interpretations which satisfy these nonlogical axioms are models
of the CNS. Modus ponens and generalization are inference rules

of the CNS. For a wff W, -W represents that W is a theoren,
i.e. W is derivable by applying the inference rules on the
axioms. Since the CNS is a first-order theory, it is obvious

the following proposition holds.

[Prop. 1] For a wff W in the CNS, - w if and only if = w. B

2.3. Vvirtual Network Machine (VNM)

We define a virtual network data structure V by introducing
ordering relations on the conceptual network data structure N.
We also define a virtual network machine (VNM) which ‘executes
virtual operations (VOP's) on V which correspond to the
DML's [OLLE78].

2.3.1. virtual Network Data Structure

A virtual network database(VDB) is a collection of wvirtual
RO (VRO)-sets and virtual SO(VSO) sets. For every RO-set A in
the CLB, a VRO-set X is defined as a totally ordered set (A, <)
where, for every a and a' € A, a < a' if and only if @A(a) <
da(a'). Each element in X is a VR occurrence.

For every SO-set C of S-type C=(A,B), a VSO-set 7 |is
defined as a set {<a,m(a)>| ach and m(a)#@}. Here, m(a) 1is a
set of all a's members in B. It is totally ordered in either an
ascending/descending order on some item of B or arbitrary order.
Each element in Z is a VS occurrence. VRO-sets for A and B are
an owner and member VRO-sets, respectively. \ - -

2.3.2. Virtual HNetwork Operations (VOP's)

A virtual network machine (VNM) is composed of registers al,
«eey an, gy, d¥, and for every VRO set X and VSO set Z, dX and
dz, respectively, where d¢, dX, dZ called currencies correspond
to " currency indicators[OLLE78]. The ViM manipulates the VDB by
the following virtual operations(VOP's). Here, let X and Y Dbe
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member and owner VRO sets for Z, respectively.

(1) first (X)/ last (X). The db-key of the first/last VR
occurrence 1in X is stored in 49 and dX. Here, a register d is
gsaid to denote VR occurrence x if and only if x's db-key 1is
stored in d. Let (d) be a VR occurrence x denoted by d.

(2) next (X)/ prior (X). The db-key of the VR occurrence
next/prior to (dX) is stored in d@ and dX.

(3) first (Z)/ last (2). The db-key of the first/last VR
occurrence in m(x) where x = (dX) is stored in d@, dY, and dZ.

(4) next (2)/ prior (Z). The VR occurrence's db-key next/prior
to y in m(x) wnere y = (dz) is stored in d@, dY, and dZ.

(5) owner (Z). The db—key of x in owner X where (dZ) € m(x) is
stored in dg and dX.

(6) get (X, a). The data item values of x € X where x = (dX) is
stored in register a.

(7) any (X, v). If some item t of X is a direct access iten,
the db-key of x € X is stored in d¢ and dX, where t(x) = v and
there exist no x"€X such that x"<x and t(x")=v.

(8) dup (X, v). If t is a direct access item, the db-key of x'
in X is stored in d¥ and dX, where x<x', t(x')=v, and there
exist no x" in X such that x<x"<x'. ‘

(9) find (X, a). The db~key of x €X which is stored in regis-
ter a is stored in d¢ and dX. '

(1) accept (X, a)/ accept (Z, a). The db-key in dX/dZ is
stored in register a.

If VOP's execution terminates correctly, "S(uccess)" is stored
in the register g, otherwise "F(ailure)". It is easily under-
stood that for each VOP there exists a DML. For example, find
next Y within % for next( Z), and find X; db key is a for next
(Z2).

3. Navigational Resolution

Let us discus how to resolve CNL clauses by using the
VOP's.
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3.1. Clause Form iﬂ the CHNL

We assume that every wff in the CWNL is in a Horn clause

[KOWAT79]. There are two kinds of Horn clauses, i.e. definite
and goal ones. A definite clause W is in a form A<-Bl, ...,
Bm(m>@), - where A and Bi(i=l,...,m) are atoms of a form

R(tl,...,tn) where R is an n-ary predicate symbol and ti a term
(i=1l,...,n). A is a head, and Bl,...,Bm a body. If m = ¢, W is
a unit clause, otherwise, a rule clause. A goal clause G is in
a form <- Bl,...,Bm(m>7). If m = @, G is an empty clause[].
Variables prefixed by ? in G are target variables. Variables
are written in upper-case letters and constants lower-case ones.

Let us give you an example of a definite clause set F for
the schema in Fig.l.

F={1l) ED(N,M)<- E(X,N),DE(Y,X),D(Y,M).
2) EE(N,M)<- E(X,N),EP(X,Y),PEL(Y),PE(Z,Y), ' Z,M).
3) PP(N,T)<~ EE(N,T).
4) PP(N,T)<- EE(N,U),EE(M,U),PP(M,T).

5) E(1,a)<~, 6) E(2,b)<~.
7) E(3,c)<~. 8) E(4,d)<~.
9) D(1,c)<~, 14) D(2,a)<~.

11) DE(1,1)<-. 12) DE(1,3)<~.
13) DE(2,2)<~. 14) DE(2,4)<~-.
15) P (1,d)<-. 16) P (2,n)<~.
17) PE(1,1)<~. 18) Pl(1,2)<~.
19) PE(1,3)<~-. 20) PE(2,4)<~-.
21) PE(2,5)<~. 22) EP(1,1)<~.
23) EP(1,4)<~. 24) EP(2,5)<~.
25) EP(3,2)<-. 26) EP(4,3)<~.

27) EPL(1)<-. 28) EPL(2)<-.
29) EPL(3)<~. 38) EPL (4)<~.
31) EPL(5)<K~. } eee(3.1)

Here, E, D, P, and PEL are R-symbols, DE, PE, and EP are S5-
symbols, and DE, EE, and PP are V-symbols. Unit clauses 5)78)
denote that a,b,c,d are employee, 9)710) that there are two
departments ¢ and a, 11)714) that department ¢ has members a and
c, and a. has b and d, 15)716) show there are two projects d and
n, and 17)731) indicate that project d has members a, c, d, and
n has a, b, e. Rule 1) indicates that employee N belongs to
department M. Rule 2) indicates that employee N belongs to pro-
ject M. Rules 3) and 4) show that N is an employee who partici=-
pates in project T including T's members M and employees who
belony to the same projects as M.
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3.2. SLD Resolution

Let P be a set of definite clauses and G a goal clause <-
Bl,...,Bm, Suppose that a computation rule R[LLOY85] gives an
atom Bi called a selected atom from G. A substitution e is in a
form {X1/t1,...,Xh/th} where Xi 1is a variable and ti a
term(i=1,...,h). For an expression E, Ee 1is one obtained by
replacing simultaneously all occurrences of Xi in E Dby
ti(i=1,...,h). Let C be an input clause B<- Al,...,Ak in P, and
e a substitution such that Be=Bie. An SLD resolvent of G and C
with e is a goal - (B1l,...,Bi-1, Al,...,An, Bi+l,...,Bm)e. An
SLD deduction of P U{G} via R is a sequence of goal clauses
GW (=G),Gl,...,Gn, input clauses Cl,...,Cn, and substitutions e
l1,..., ®en, where Gi is an SLD resolvent of Gi-l1l and Ci with ei
(i>1). An SLD refutation F is an SLD deduction which derives an-
empty ‘clause. An answer substitution is a restriction of compo-
sition el...en in F on the target variables in G.

Let us take a goal G= <-PP(?N,d) and F of (3.1) as an exam-
ple. All possible SLD deductions of F U {G} via some computa-
tion rule R are represented by an SLD tree as shown in Fig.2.
Here, nodes denote goals and selected atoms are underlined.
Labels attached on branches show input clauses in F. For exam-
ple, a goalGl= <-EE(?N,d) is derived from G and the input clause
3). Each root-to-leaf path denotes an SLD deduction. Paths
denoting refutations are success paths.

Next problem is how to find success paths in the SLD tree.
Most Prolog systems|[CLOC84] use a depth-first search of the SLD
tree using a prefixed ordering of input clauses. Let us con-
sider a goal G2= <-E(X,?N),EP(X,Y), PEL(Y), PE(Z,Y),P(Z,d) in
Fig.2, where an atom PEL(Y) is selected by R. First, an input
clause 27) 1is selected and a resolvent G3= <-E(X,?N),EP(X,Y),
PE(Z2,Y), P(z2,d) is derived. Then, a resolvent Gd= <=~
E(X,?N) ,EP(X,Y), P(Z,d) is derived. Like this, an empty clause
is derived. v

Now, let us consider another example of a goal G = <~
A(X,Y),B(Y),C(X). By the Prolog refutation procedure, first,
A(X,Y}) is selected and a resolvent Gl= <K-(B(Y),C(X))el |is
derived, where 1 1is a substitution for variables X and Y.
Then, a resolvent G2= <-C(X)ele2 is derived from Gl, where 2 is
a substitution for Y. But, suppose that the resolution of G2
fails. We go back to G2 and try to find a next input clause.
This process 1is called a backtracking from G2 to Gl. Here,
looking at Gl, atoms B(Y) and C(X) have no common variables.
This 1implies that the backtracking from G2 to Gl is meaningless
since further resolutions of <-B(Y) do not generate any new sub-
stitutions for wvariables in C(X). Thus, the Proloy procedure
cannot prevent those meaningless backtrackings. '
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G=<- PP (?N,d).

(33— T T=(4)

Gl=<-EE(?N,d). . <-EE (2N, U),EE(X,U),PP (X,d).

(2) | \

G2=<~E (X, ?N) ,EP (X, Y) ,EPL (Y) ,
PE(Z,Y) ,P(Z,d). ‘

0y

™~ NN\
(27) (28) (29) (39) 31)
' AN NN
G3=<-E(X,?N), <-E(X,?N),- <=E(X,?N),
EP(X,1), EP(X,2), EP (X,5),
PE(Z,1), PE(Z,2), RE(Z,5),
P(Z,d). P(Z,d). P(Z,d).
(17) ' ‘(21)
G4=<-E (X, ?N), 1 <~E (X, ?N),
EP (X,1), ’ EP(X,5),
P(l,d). P(2,d).
(15)
X
G4=<~E (X, ?N),
EP (X,1).
(22)

G5=<~-E(1,?N).
(5)

Gs=  [J.
Fig.2 SLD tree.

3.3. Navigyational Refutation (NVR) Procedure

Now, let us present our navigational refutation(NVR) pro=-
cedure which aims at improving the Prolog procedure so as to
take advantage of the virtual network machine (VHNM), 1i.e.
record-at-a-time manipulation of data, and increase the perfor-
mance. First point on considering a logic interface on the VNM
is that a definite clause set P includes very more unit clauses
whicn denote R~ or S-occurrences in the conceptual network data-
base (CDB) than rules. Next, it is required to get all answer
substitutions for a goal. Furthermore, it takes for . resolution
much CPU time that is comparable with I/0 time. A backtracking
to some goal G requires that G be resolved for next input clause
C defined by some prefixed ordering. This backtracking consumes
computer resources. If the number of backtackings is decreased,



265

the - refutation performance can be improved. So, intelligent
.backtracking [CAMP84] has been proposed. Here, we propose a
partially-compiled method that once an SLD resolution F is
found, a VOP program which derives whole result from the VHM is
synthesized with respect to the sequence of the selected atoms
in F. Also, we prevent meaningless backtrackings by going back
from a goal G to G'

Now, let S be a set of success paths, i.e. SLD refutations,
in an SLD tree T for P U {G} via a computation rule R. Problem
is how to find all the success paths in T. 1In the conventional
Prolog systems, once a success path is found, another one is
tried to be found by triggering backtrackings. As we stated
before, resolutions consume. computation resources, i.e. CPU and
main memories. Our approach toward decreasing the number of the
resolutions to yet all success paths in T is that once a success
path, i.e. an SLD refutation F, is found, we generate a VOP pro-
gram for F, which can derive all answer substitutions for all
refutations F' similar to F. By this, the resolutions for F'
can - be avoided,. What 1is the similarity relation between the
refutations?

<=(Blyeve,BJ,en.,Bk) <= (B'1,eee,B"3"yuu,B'k")

ei-1 ei-1
Ci= B<-Al,...,Ak. C'i= B'<-A"'1,...,A'k".
/ s / s’
/ /
/ /
/ /
<-(Bl,e.., <=(B'"1l,...,
Al,...,Ak, A'l,...,A'k',
«.e,Bk)eoi. .../B'k")ei.
(a) (b)
Fig.3 Equivalence resolution.

Now, let us define a similarity relation 2 on S.

[Def.] Let F and F' be SLD refutations for P U {G} via R. F and
F' are said to be similar ( FZF' ) if and only if the following
conditions hold.

1) F and F' have the same length n.

2) For every i(=0¢,1,...,n)-th resolution in F and F' as shown
in Fig.3 (a) and (b), respectively, the followings hold.

2-1) ei= ei-1 s if i>@, e if i=@. e'i= e'i-1 s' if i>@, e Iif
i=g. | | |
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2-2) k=k', J=j'(Bj=Bj"') m=m'. If m=m'=¢, B and B' are atoms of
the same predicate symbol. If m=m'>@, the input clauseg
Ci ad Ci' are the same .[]

It is clear that the similarity relation £ 1is an equivalence
relation, Hence, S is divided into equivalence classes, S1,
S2,..., With respect to £, where Si = {F| FEF' and F, F'eS5}. 1In
two refutations F and F' in S, when the 1input clauses are ground
unit clauses, only their occurrences are different. For exam~
ple, in the SLD tree in Fig. 2, the success paths are divided
into equivalent classes Sl= { (3)-(2)-(27)-(17)-(15)=(22)~(5),
(3)-(2)~e.ee, ceay (3)-(2)=-(31)~-(21) }, S2= {(4)=eeeseeedl,
S3={(4)~cee},eunn .

Next, once an SLD refutation F is found, how to find all
similarity refutations,. Now, let B be a sequence of selected
atoms in F. Let A be a subsequence obtained by omitting from B
ones whose input clauses are rule clauses. That is, A contains
only R-, S-, and N-atoms. A following SLD refutation F" of P U
{a} is defined, i.e. selected atoms are selected in an order of
A. In F", input clauses are ground unit clauses, i.e. R- or S~
occurrences. For example,  in S1, A is a goal <~
EPL(Y),PL(Y,2),P(Z2,d),EP(X,Y),E(X,?N). Input clauses are
selected with respect to the ordering defined in the VWM. From
this refutation, we generate a VOP program as shown in Fig.4.

first (EPL); go to M1.
Ll: next (EPL) .
Ml: if (g = F) go to END.

owner (PE). go to M2. .
L2: go to L1. /* backtrack */
M2: if (g = F) go to END.

get (P).
if ( P.pname™=d) go to L2.
go to M3,
L3: go to L2. /* backtrack */

M3:
owner (EP) .
L4: go to L3.
M4, 1if (g = F) go to L3. /* backtrack */

get(L).
output(E.ename). go to L4. /* backtrack */

Fig.4 VOP programn.

It is clear that all answer substitutions in the equivalence
class S2 are derived by this VOP program. But, this program

1a
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includes meaningless backtracking.

3.4. Optimization

Then, we try to generate a VOP program V for an equivalent
class Si, which does not include meaningless backtrackings.

First, we define a goal graph. For an atom A, let V(A) be
a set of variables in A. For atoms C and D, we define an opera-
tion named a substitution intersection C°D on e as .a set
{<x,y>|XGV(C), yev (D), and xe=yel}.

[Def.] For a goal <-Bl,...,Bm and a substitution e,
GL({Bl,...,Bmn}) 1is a goal graph obtained by the following pro-
cedure:

1) For every subyoal Bi, a node Bi is created.

2) For every pair of nodes Bi and Bj, for each <x,y> in
V(Bi) "V(Bj) on e, an edge <Bi:x, Bj:y> between Bi and Bj is
created. [J

[Def.] Let P be a set of definite clauses, G a goal, R a compu-
tation rule, and F an SLD refutation of P U{G} via R. Let M be
a set {<A,§>| KX is an R or S atom in P U{G} and A is a selected
atom with a substitution 8 where A=A8 in F}. A target graph for
F is a goal graph of atoms in M. (]

Now, we define a navigational (NV) tree.

[Def.] A navigational (NV) tree T for a goal graph G is defined
as a tree which satisfies the following conditions:

1) There exists a bijection from nodes in T to nodes in G.

2) If there is an edyge between nodes X and Y in G, X and Y are
in the same path in T.

3) - Children of every node X are totally ordered in a right-to-
left order, i.e. nodes in T are totally ordered in a depth-
first manner.

A target node <B,e> is a first node among ones in T which
include any variable X for some target variable Y such that Xe
=Ye. A target subtree in T is a subtree which includes any tar-
get node.[]

Fig.5 shows an éxample of an NV tree for a goal Gl in
Fig.2. A node (1) is a root and (2) a target node.

11
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(1) EPL (Y)
PE(Y,2) Ep{i:Y)
P(2Z,d) (2) E(X,?N)

Fig.5 Navigational tree.

lNow, we present a navigational refutation(NVR) procedure to
find an SLD refutation,

[NVR] A navigational (NV) refutation of P U {G} via R consists of"

sequences of goals GU(=G), Gl,...,Gn(=[]), NV trees T0,...,Tn,

goal graphs GL¥,...,GLn, input clauses Cl,...,Cn, and substitu~"

tions el,..., en if the following conditions hold:
1) Tﬂ=¢, el=e (identity substitution), GLO=GL (G@).

2) Let Gi~1l be <-Bl,...,Bm. Suppose that R gives a selected
atom Bj and a node X in Ti-l1 from Ti-1, Gi-1, and ei-1, i.e,

<Bj, X>=R(Ti-1, Gi-1, ei-1l). Let Ci be B<-Al,...,Ak (k>@)

~

with a substitution & where B8&=Bi&. Gi is an SLD resolvent
of Gi-1 and Ci with 8. ei=ei-1l., There are two cases on k.

a) In the case of k=4, a VRO or VSO set denoted by B is
accessed navigationally by VOP's to find an occurrence which
satisfies ei-1l. Ti is obtained by adding a node <Bi, ei-1>
as a last child of X in Ti-1l. GLi is obtained by deleting
from GLi~-1 a node Bi and edges whose both ends do not exist.

b) k>1. GLi is obtained by deleting Bi and all edges incident
to Bi from GLi-1l, and adding GL({Al,...,Ak}) to GLi-1l. Ti=
Ti-1.

Here, en is a navigational (NV) substitution.[

[NV rule] For a tree T, a goal graph GL, and a substitution e, a
navigational (NV) rule R gives a selected atom B in GL and a node
X in T by the following procedure where cost functions fcost and
ecost are defined in a later section:

(1) Let X be a right-most leaf in T.
(2) If GL=¢, go to (6).

(3) Select a node B in T such that ecost(B,e) is minimum and
V(B)"V(X)f¢ on e. :
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(4) If found, return B and X.

(5) Otherwise, if X is not a root, then let X be a parent of X
and go to (2).

(6) Select a node B in GL whose fcost(B,e) is minimum and
return B and X.[]

[Prop. 2] A sequence of G#,...,Gn, Cl,...,Cn, ®l,..., en in the
NV refutation is an SLD refutation.

[proof] By the definition, it is obvious. B

This proposition implies that our system based on the NVR pro-
cedure 1is sound and complete because of soundness and complete-
ness of the SLD resolution[LLOY85]}.

[Prop. 3] An NVR procedure generates an NV tree,

[proof] Let G be a target graph of an SLD refutation F. By the
definition, a tree Tn in the NVR procedure is generated by
searching G in a depth-first manner. 1In Tn, all edges in G are
contained in the same path. B

[Prop. 4] Let T be an NV tree, e an NV substitution for T, S a
subtree of T, and e' an NV substitution for S where there is e"
such that e= e'e". If there exists another NV substitution & of
S for given e", 8e" is also an NV substitution for T.

[proof] By the definition, every two nodes which are included in
different paths in T do not have common unifiable variables.
So, e" does not contain substitution for variables of nodes
other than in S. 8

This ptoposition means that once an answer substitution 'is
found, subtrees which contain no target nodes can be skipped
when backtracking. ' ,

3.5. VOP Program for a Navigational (NV) Tree

A VOP program . V for an NV tree T is a set of cells inter-
connected by directed 1links. For every node X in T, there
exists a cell C(X) which has two input ports, F(X) and N(X), and
four output ports, S(X), B(X), PT(X), and NT(X)[see Fig.6].
C(X) 1is considered as an object which contains an otdered set
D(X), i.e. VRO-set or VS-occurrence, and manipulates D(X) by the
VOP's. Links represent output-to-input relations among cells.
There are four kinds of links, S, B, PT, and NT. Let X and Y be
nodes in T. If Y is next to X in a depth-first order of T, an.
S-link exists from S(X) to F(Y). If Y is an X's parent in T, a
B-link exists from B(X) to N(Y). If Y is a target node which is

13
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left-/right-nearest to X in T, a PT-/NT-link exists frop
PT (X)/NT(X) to F(Y).

- -t - o -

------ >IF  C(X) B|-=-====>

—— - s - o o -

Fig.6 Cell structure.

C(X) is activated on receipt of message token at an input
port, F(X) or MN(X). Substitution e is sent via the S~link. On
receipt of e at F(X), D(X) 1is sequentially accessed from the
first occurrence in D(X) by the VOP's. If an occurrence x which
satisfies e is found, the currency of x is saved, substitution
o' 1s constructed fromrx, and send a token with ee' via S(X).
If not found, a token is sent via B{(X). On receipt of a token
at N(X), D(X) 1is sequentially accessed from the occurrence
denoted by the saved currency in C(X).

Fig.7 shows an example of a VOP program of an NV tree T of
Fig.6. Using the proposition 4, once the first answer substitu-
tion is found and T is constructed, only target subtrees of T
are accessed. By this, generation of substitutions independent
of the answer substitution is avoided. When all answer substi-
tutions from T are optained, i.e. a token is output from B(X) of
the V's first cell X, a backtracking occurs to a first goal
among ones in the NV refutation whose input clause is a rule
with no target variables. Also, Fig.8 shows a cell structure of
the VOP program of Fig.4.

first (EPL). go to M2.
L1l: next (EPL) .
Ml: 1if(g=F) go to END.
owner (PE).
if (g=F) go to Ll.
get (P) .
if (P.pname”™=d) go to L1.

14
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owner (EP).

if (g=F) go to Ll.
get (E) .
output(E.ename). go to Ll.
B
"""""""" /SN S
S S i S T\ S i
EPL~=e~- PPE~memmm PP=w e DEP-m~mmma >E

Fig.7 Vop Program.

- s - — - "~ p—. o o —— o ——— o - oot

Fig.8 Vop Program of Fig.4.

3.6. Cost Functions

Let us define the cost functions fcost and ecost used in
the NV rule R. Assume that cost measure is an expected number
of VR occurrences manipulated by the VHM. fcost(B,e) gives a
cost for getting all substitutions for an atom Be. There are
two cases. First case is B denotes a VRO set X. Let X] be an
X's cardinality and st a selectivity[HEVN78] of an item t in X.

(a) fcost(B,e)=st |X| if, for a variable T to the item t, Te=c
and t is a direct access item.
(b) fcost(B,e)=|X| otherwise X is sequentially accessed.

Next, B is a V atom and V<-Cl,...,Cn ia an input clause.
(c) fcost(B,e) = M Summation of cost(Ci) for i=1l,..,n.

If B is not recursive, M=1l, else M > 1. By Iincreasing M, the
resolution of recursive views can be delayed.

ecost(B,e) gives a cost for getting all answer substitu-
tions of Be. Let Z be a VSO set denoted by B if B is an S atom.

.the average number of member VR occurrences which
each owner has(>0)
if sequentially accessed by first(Z) and next(Z).
ecost (B,e)={.the possibility that each member has an owner
(<1) if accessed by owner(Z).
.fcost (B, e) otherwise.

15
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4. Concluding Remarks

Fig.9 shows an overview of our system called LIP(Logic
Interface Processor on the CODASYL database system). The LIP is
implemented in Lisp. Each VOP is called via a LISP function
call, each of which is written in PL/I. At present, Fujitsu's
AIM/DB of a CODASYL type is used as a fact database which stores
ground unit clauses. The rules and new facts are stored in a.
relational database system AIM/RDB. The AIM/DB is accessed by
using Lisp VOP functions in an interpretive manner. Our LIP is
operational on Fujitsu's M-360R,

In this paper, we showed the first-order theory of logical
part of the conventional CODASYL model, and made clear the
semantics of the CODASYL DML by the behavior of the abstract
machine VHNM. Next, based on the formal system, we showed how to
translate logic queries into DML operations, Our system
accesses the CODASYL database by interpretive manner because the
VOP, i.e. DML, navigationally manipulates the data in the data-~
base. Although a 1lot of researchers have tried to implement
logic database using the relational model, major parts of exist-~
ing databases are of a CODASYL type, and we think that the
CODASYL model is also in harmony with logic.

CNL

- - o /—"\

\_’/
L IP }<—~——>lAIM/RDB relational DBS

I

rule database and
new fact database.

- o - ——

\\__‘/
CODASYL
DBS
AIM/DB

\\__‘__,./
fact database

Fig.9 Overview of LIP.
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