15 research outputs found

    The dynamic organization of fungal acetyl-CoA carboxylase

    Get PDF
    Acetyl-CoA carboxylases (ACCs) catalyse the committed step in fatty-acid biosynthesis: the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. They are important regulatory hubs for metabolic control and relevant drug targets for the treatment of the metabolic syndrome and cancer. Eukaryotic ACCs are single-chain multienzymes characterized by a large, non-catalytic central domain (CD), whose role in ACC regulation remains poorly characterized. Here we report the crystal structure of the yeast ACC CD, revealing a unique four-domain organization. A regulatory loop, which is phosphorylated at the key functional phosphorylation site of fungal ACC, wedges into a crevice between two domains of CD. Combining the yeast CD structure with intermediate and low-resolution data of larger fragments up to intact ACCs provides a comprehensive characterization of the dynamic fungal ACC architecture. In contrast to related carboxylases, large-scale conformational changes are required for substrate turnover, and are mediated by the CD under phosphorylation control

    Dynamic architecture of multi-domain carboxylases

    Get PDF
    Biotin-dependent carboxylases are ubiquitous enzymes that play pivotal roles in key biosynthetic pathways. They employ a mobile biotin carboxyl carrier protein (BCCP) to catalyze ATP-dependent two-step carboxylation reactions utilizing two distinct enzyme activities, biotin carboxylase (BC) and carboxyl transferase (CT). Their substrate specificity is either towards small organic molecules, such as urea and pyruvate, or towards acyl-Coenzyme A (acyl-CoA) esters. One of the most prominent members of acyl-CoA carboxylases, acetyl-CoA carboxylase (ACC), catalyzes the conversion of acetyl-CoA to malonyl-CoA, the highly regulated committed step of fatty acid biosynthesis. Eukaryotic ACC is a giant multienzyme, encompassing all catalytic domains, the BCCP and a large non-catalytic central domain (CD) on one type of polypeptide chain. The overall structure of eukaryotic ACCs as well as the structure of the CD, which is unique to eukaryotic ACCs, and its role in ACC regulation, remain unknown. This thesis provides a comprehensive characterization of the dynamic structure of fungal ACC by combining crystal structure determination, small-angle X-ray scattering (SAXS) and electron microscopy (EM). The crystal structure of yeast CD, accompanied by low-resolution data on larger fragments up to intact fungal ACCs, reveals that the CD acts as a multi-hinged link between the BC and CT domains. Phosphorylation has an impact on the dynamic architecture resulting in a unique “mechanical” control mechanism. A novel class of prokaryotic multi-domain acyl-CoA carboxylases (YCCs) was discovered recently. They share the same domain organization with eukaryotic ACCs, but lack the CD. A hybrid model of the Deinococcus radiodurans YCC (Dra YCC), together with quantitative analysis of BC domain mobility, provides novel insights into active site structure, domain interactions and dynamic assembly of these prokaryotic multienzymes. The implications of our structural studies of yeast ACC and Dra YCC for multienzyme engineering are discussed. In addition, the crystal structure and NMR analyses of the membrane-bound, dimeric bacterial extracellular foldase PrsA reveal a bowl-like crevice as the key structural element for binding and folding of unfolded proteins

    Dimeric structure of the bacterial extracellular foldase PrsA

    Get PDF
    Secretion of proteins into the membrane-cell wall space is essential for cell wall biosynthesis and pathogenicity in Gram-positive bacteria. Folding and maturation of many secreted proteins depend on a single extracellular foldase, the PrsA protein. PrsA is a 30 kDa protein, lipid-anchored to the outer leaflet of the cell membrane. The crystal structure of Bacillus subtilis PrsA reveals a central catalytic parvulin-type prolyl isomerase domain, which is inserted into a larger composite NC domain formed by the N- and C-terminal regions. This domain architecture resembles, despite a lack of sequence conservation, both trigger factor, a ribosome-binding bacterial chaperone, and SurA, a periplasmic chaperone in Gram-negative bacteria. Two main structural differences are observed in that the N-terminal arm of PrsA is substantially shortened relative to trigger factor and SurA and in that PrsA is found to dimerize in a unique fashion via its NC domain. Dimerization leads to a large, bowl-shaped crevice, which might be involved in vivo in protecting substrate proteins from aggregation. NMR experiments reveal a direct, dynamic interaction of both the parvulin and the NC domain with secretion propeptides, which have been implicated in substrate targeting to PrsA

    Hybrid Structure of a Dynamic Single-Chain Carboxylase from Deinococcus radiodurans

    No full text
    Biotin-dependent acyl-coenzyme A (CoA) carboxylases (aCCs) are involved in key steps of anabolic pathways and comprise three distinct functional units: biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyl transferase (CT). YCC multienzymes are a poorly characterized family of prokaryotic aCCs of unidentified substrate specificity, which integrate all functional units into a single polypeptide chain. We employed a hybrid approach to study the dynamic structure of Deinococcus radiodurans (Dra) YCC: crystal structures of isolated domains reveal a hexameric CT core with extended substrate binding pocket and a dimeric BC domain. Negative-stain electron microscopy provides an approximation of the variable positioning of the BC dimers relative to the CT core. Small-angle X-ray scattering yields quantitative information on the ensemble of Dra YCC structures in solution. Comparison with other carrier protein-dependent multienzymes highlights a characteristic range of large-scale interdomain flexibility in this important class of biosynthetic enzymes

    Structural basis for regulation of human acetyl-CoA carboxylase

    No full text
    Acetyl-CoA carboxylase catalyses the ATP-dependent carboxylation of acetyl-CoA, a rate-limiting step in fatty acid biosynthesis(1,2). Eukaryotic acetyl-CoA carboxylases are large, homodimeric multienzymes. Human acetyl-CoA carboxylase occurs in two isoforms: the metabolic, cytosolic ACC1, and ACC2, which is anchored to the outer mitochondrial membrane and controls fatty acid beta-oxidatio(1,3). ACC1 is regulated by a complex interplay of phosphorylation, binding of allosteric regulators and protein-protein interactions, which is further linked to filament formation(1,4-8). These filaments were discovered in vitro and in vivo 50 years ago(7,9,10), but the structural basis of ACC1 polymerization and regulation remains unknown. Here, we identify distinct activated and inhibited ACC1 filament forms. We obtained cryo-electron microscopy structures of an activated filament that is allosterically induced by citrate (ACC-citrate), and an inactivated filament form that results from binding of the BRCT domains of the breast cancer type 1 susceptibility protein (BRCA1). While non polymeric ACC1 is highly dynamic, filament formation locks ACC1 into different catalytically competent or incompetent conformational states. This unique mechanism of enzyme regulation via large-scale conformational changes observed in ACC1 has potential uses in engineering of switchable biosynthetic systems. Dissecting the regulation of acetyl-CoA carboxylase opens new paths towards counteracting upregulation of fatty acid biosynthesis in disease

    Structural basis for regulation of human acetyl-CoA carboxylase

    No full text
    Acetyl-CoA carboxylase catalyses the ATP-dependent carboxylation of acetyl-CoA, a rate-limiting step in fatty acid biosynthesis; 1,2; . Eukaryotic acetyl-CoA carboxylases are large, homodimeric multienzymes. Human acetyl-CoA carboxylase occurs in two isoforms: the metabolic, cytosolic ACC1, and ACC2, which is anchored to the outer mitochondrial membrane and controls fatty acid β-oxidation; 1,3; . ACC1 is regulated by a complex interplay of phosphorylation, binding of allosteric regulators and protein-protein interactions, which is further linked to filament formation; 1,4-8; . These filaments were discovered in vitro and in vivo 50 years ago; 7,9,10; , but the structural basis of ACC1 polymerization and regulation remains unknown. Here, we identify distinct activated and inhibited ACC1 filament forms. We obtained cryo-electron microscopy structures of an activated filament that is allosterically induced by citrate (ACC-citrate), and an inactivated filament form that results from binding of the BRCT domains of the breast cancer type 1 susceptibility protein (BRCA1). While non-polymeric ACC1 is highly dynamic, filament formation locks ACC1 into different catalytically competent or incompetent conformational states. This unique mechanism of enzyme regulation via large-scale conformational changes observed in ACC1 has potential uses in engineering of switchable biosynthetic systems. Dissecting the regulation of acetyl-CoA carboxylase opens new paths towards counteracting upregulation of fatty acid biosynthesis in disease

    Evolutionary PTEN gene divergence underpins the remodeling of plant vacuolar compartments

    No full text
    Membrane fusion and fission are fundamental processes in sustaining cellular compartmentalization. Fission of a lipid bilayer requires a furrow formation that brings membranes in close proximity prior to a contiguous membrane cleavage. Although plant ancestors abandoned cleavage furrow-mediated cytokinesis more than 500 million years ago, here we show that plants still employ this mechanical principle to divide embryonic vacuoles. The evolutionary divergence in PHOSPHATASE AND TENSIN HOMOLOG DELETED ON CHROMOSOME TEN (PTEN) enzymes was required to coordinate this process, as Arabidopsis loss-of-function pten2a pten2b mutants contain hyper compartmentalized embryonic vacuoles. In contrast, PTEN2 overexpression hinders lytic and secretion cellular pathways downstream of TGN in xylem cells. These processes are critical for the formation of secondary cell walls in xylem cells and depend on a poorly characterized and evolutionarily novel N-terminal domain in PTEN2s. The PTEN2 subfamily appeared with the emergence of the Phragmoplastophyta clade, when vacuolar compartments enlarged and cleavage furrow-mediated cytokinesis became extinct. Together, our work suggests that the evolutionary innovation of the PTEN family is conserved across terrestrial plants and central to vacuolar remodelling

    HAPSTR1 localizes HUWE1 to the nucleus to limit stress signaling pathways

    No full text
    Summary: HUWE1 is a large, enigmatic HECT-domain ubiquitin ligase implicated in the regulation of diverse pathways, including DNA repair, apoptosis, and differentiation. How HUWE1 engages its structurally diverse substrates and how HUWE1 activity is regulated are unknown. Using unbiased quantitative proteomics, we find that HUWE1 targets substrates in a largely cell-type-specific manner. However, we identify C16orf72/HAPSTR1 as a robust HUWE1 substrate in multiple cell lines. Previously established physical and genetic interactions between HUWE1 and HAPSTR1 suggest that HAPSTR1 positively regulates HUWE1 function. Here, we show that HAPSTR1 is required for HUWE1 nuclear localization and nuclear substrate targeting. Nuclear HUWE1 is required for both cell proliferation and modulation of stress signaling pathways, including p53 and nuclear factor κB (NF-κB)-mediated signaling. Combined, our results define a role for HAPSTR1 in gating critical nuclear HUWE1 functions
    corecore