10 research outputs found

    Gate-induced blueshift and quenching of photoluminescence in suspended single-walled carbon nanotubes

    Get PDF
    Gate-voltage effects on photoluminescence spectra of suspended single-walled carbon nanotubes are investigated. Photoluminescence microscopy and excitation spectroscopy are used to identify individual nanotubes and to determine their chiralities. Under an application of gate voltage, we observe slight blueshifts in the emission energy and strong quenching of photoluminescence. The blueshifts are similar for different chiralities investigated, suggesting extrinsic mechanisms. In addition, we find that the photoluminescence intensity quenches exponentially with gate voltage.Comment: 4 pages, 4 figure

    Exciton diffusion in air-suspended single-walled carbon nanotubes

    Get PDF
    Direct measurements of the diffusion length of excitons in air-suspended single-walled carbon nanotubes are reported. Photoluminescence microscopy is used to identify individual nanotubes and to determine their lengths and chiral indices. Exciton diffusion length is obtained by comparing the dependence of photoluminescence intensity on the nanotube length to numerical solutions of diffusion equations. We find that the diffusion length in these clean, as-grown nanotubes is significantly longer than those reported for micelle-encapsulated nanotubes.Comment: 4 pages, 4 figure
    corecore