Direct measurements of the diffusion length of excitons in air-suspended
single-walled carbon nanotubes are reported. Photoluminescence microscopy is
used to identify individual nanotubes and to determine their lengths and chiral
indices. Exciton diffusion length is obtained by comparing the dependence of
photoluminescence intensity on the nanotube length to numerical solutions of
diffusion equations. We find that the diffusion length in these clean, as-grown
nanotubes is significantly longer than those reported for micelle-encapsulated
nanotubes.Comment: 4 pages, 4 figure