43 research outputs found

    Genetic Background Strongly Modifies the Severity of Symptoms of Hirschsprung Disease, but Not Hearing Loss in Rats Carrying Ednrbsl Mutations

    Get PDF
    Hirschsprung disease (HSCR) is thought to result as a consequence of multiple gene interactions that modulate the ability of enteric neural crest cells to populate the developing gut. However, it remains unknown whether the single complete deletion of important HSCR-associated genes is sufficient to result in HSCR disease. In this study, we found that the null mutation of the Ednrb gene, thought indispensable for enteric neuron development, is insufficient to result in HSCR disease when bred onto a different genetic background in rats carrying Ednrbsl mutations. Moreover, we found that this mutation results in serious congenital sensorineural deafness, and these strains may be used as ideal models of Waardenburg Syndrome Type 4 (WS4). Furthermore, we evaluated how the same changed genetic background modifies three features of WS4 syndrome, aganglionosis, hearing loss, and pigment disorder in these congenic strains. We found that the same genetic background markedly changed the aganglionosis, but resulted in only slight changes to hearing loss and pigment disorder. This provided the important evidence, in support of previous studies, that different lineages of neural crest-derived cells migrating along with various pathways are regulated by different signal molecules. This study will help us to better understand complicated diseases such as HSCR and WS4 syndrome

    Endothelial Cells in Co-culture Enhance Embryonic Stem Cell Differentiation to Pancreatic Progenitors and Insulin-Producing Cells through BMP Signaling

    Get PDF
    Endothelial cells (ECs) represent the major component of the embryonic pancreatic niche and play a key role in the differentiation of insulin-producing ÎČ cells in vivo. However, it is unknown if ECs promote such differentiation in vitro. We investigated whether interaction of ECs with mouse embryoid bodies (EBs) in culture promotes differentiation of pancreatic progenitors and insulin-producing cells and the mechanisms involved. We developed a co-culture system of mouse EBs and human microvascular ECs (HMECs). An increase in the expression of the pancreatic markers PDX-1, Ngn3, Nkx6.1, proinsulin, GLUT-2, and Ptf1a was observed at the interface between EBs and ECs (EB-EC). No expression of these markers was found at the periphery of EBs cultured without ECs or those co-cultured with mouse embryonic fibroblasts (MEFs). At EB-EC interface, proinsulin and Nkx6.1 positive cells co-expressed phospho-Smad1/5/8 (pSmad1/5/8). Therefore, EBs were treated with HMEC conditioned media (HMEC-CM) suspecting soluble factors involved in bone morphogenetic protein (BMP) pathway activation. Upregulation of PDX-1, Ngn3, Nkx6.1, insulin-1, insulin-2, amylin, SUR1, GKS, and amylase as well as down-regulation of SST were detected in treated EBs. In addition, higher expression of BMP-2/-4 and their receptor (BMPR1A) were also found in these EBs. Recombinant human BMP-2 (rhBMP-2) mimicked the effects of the HMEC-CM on EBs. Noggin (NOG), a BMP antagonist, partially inhibited these effects. These results indicate that the differentiation of EBs to pancreatic progenitors and insulin-producing cells can be enhanced by ECs in vitro and that BMP pathway activation is central to this process

    Somatostatin release, electrical activity, membrane currents and exocytosis in human pancreatic delta cells.

    No full text
    AIMS/HYPOTHESIS: The aim of this study was to characterise electrical activity, ion channels, exocytosis and somatostatin release in human delta cells/pancreatic islets. METHODS: Glucose-stimulated somatostatin release was measured from intact human islets. Membrane potential, currents and changes in membrane capacitance (reflecting exocytosis) were recorded from individual human delta cells identified by immunocytochemistry. RESULTS: Somatostatin secretion from human islets was stimulated by glucose and tolbutamide and inhibited by diazoxide. Human delta cells generated bursting or sporadic electrical activity, which was enhanced by tolbutamide but unaffected by glucose. Delta cells contained a tolbutamide-insensitive, Ba(2+)-sensitive inwardly rectifying K(+) current and two types of voltage-gated K(+) currents, sensitive to tetraethylammonium/stromatoxin (delayed rectifying, Kv2.1/2.2) and 4-aminopyridine (A current). Voltage-gated tetrodotoxin (TTX)-sensitive Na(+) currents contributed to the action potential upstroke but TTX had no effect on somatostatin release. Delta cells are equipped with Ca(2+) channels blocked by isradipine (L), omega-agatoxin (P/Q) and NNC 55-0396 (T). Blockade of any of these channels interferes with delta cell electrical activity and abolishes glucose-stimulated somatostatin release. Capacitance measurements revealed a slow component of depolarisation-evoked exocytosis sensitive to omega-agatoxin. CONCLUSIONS/INTERPRETATION: Action potential firing in delta cells is modulated by ATP-sensitive K(+)-channel activity. The membrane potential is stabilised by Ba(2+)-sensitive inwardly rectifying K(+) channels. Voltage-gated L- and T-type Ca(2+) channels are required for electrical activity, whereas Na(+) currents and P/Q-type Ca(2+) channels contribute to (but are not necessary for) the upstroke of the action potential. Action potential repolarisation is mediated by A-type and Kv2.1/2.2 K(+) channels. Exocytosis is tightly linked to Ca(2+)-influx via P/Q-type Ca(2+) channels. Glucose stimulation of somatostatin secretion involves both K(ATP) channel-dependent and -independent processes

    GLP-1 suppresses glucagon secretion in human pancreatic alpha-cells by inhibition of P/Q-type Ca2+ channels

    No full text
    Glucagon is the body's main hyperglycemic hormone, and its secretion is dysregulated in type 2 diabetes mellitus (T2DM). The incretin hormone glucagon‐like peptide‐1 (GLP‐1) is released from the gut and is used in T2DM therapy. Uniquely, it both stimulates insulin and inhibits glucagon secretion and thereby lowers plasma glucose levels. In this study, we have investigated the action of GLP‐1 on glucagon release from human pancreatic islets. Immunocytochemistry revealed that only <0.5% of the α‐cells possess detectable GLP‐1R immunoreactivity. Despite this, GLP‐1 inhibited glucagon secretion by 50–70%. This was due to a direct effect on α‐cells, rather than paracrine signaling, because the inhibition was not reversed by the insulin receptor antagonist S961 or the somatostatin receptor‐2 antagonist CYN154806. The inhibitory effect of GLP‐1 on glucagon secretion was prevented by the PKA‐inhibitor Rp‐cAMPS and mimicked by the adenylate cyclase activator forskolin. Electrophysiological measurements revealed that GLP‐1 decreased action potential height and depolarized interspike membrane potential. Mathematical modeling suggests both effects could result from inhibition of P/Q‐type Ca2+ channels. In agreement with this, GLP‐1 and ω‐agatoxin (a blocker of P/Q‐type channels) inhibited glucagon secretion in islets depolarized by 70 mmol/L [K+]o, and these effects were not additive. Intracellular application of cAMP inhibited depolarization‐evoked exocytosis in individual α‐cells by a PKA‐dependent (Rp‐cAMPS‐sensitive) mechanism. We propose that inhibition of glucagon secretion by GLP‐1 involves activation of the few GLP‐1 receptors present in the α‐cell membrane. The resulting small elevation of cAMP leads to PKA‐dependent inhibition of P/Q‐type Ca2+ channels and suppression of glucagon exocytosis

    GLP-1 suppresses glucagon secretion in human pancreatic alpha-cells by inhibition of P/Q-type Ca2+ channels

    No full text
    Glucagon is the body's main hyperglycemic hormone, and its secretion is dysregulated in type 2 diabetes mellitus (T2DM). The incretin hormone glucagon‐like peptide‐1 (GLP‐1) is released from the gut and is used in T2DM therapy. Uniquely, it both stimulates insulin and inhibits glucagon secretion and thereby lowers plasma glucose levels. In this study, we have investigated the action of GLP‐1 on glucagon release from human pancreatic islets. Immunocytochemistry revealed that only <0.5% of the α‐cells possess detectable GLP‐1R immunoreactivity. Despite this, GLP‐1 inhibited glucagon secretion by 50–70%. This was due to a direct effect on α‐cells, rather than paracrine signaling, because the inhibition was not reversed by the insulin receptor antagonist S961 or the somatostatin receptor‐2 antagonist CYN154806. The inhibitory effect of GLP‐1 on glucagon secretion was prevented by the PKA‐inhibitor Rp‐cAMPS and mimicked by the adenylate cyclase activator forskolin. Electrophysiological measurements revealed that GLP‐1 decreased action potential height and depolarized interspike membrane potential. Mathematical modeling suggests both effects could result from inhibition of P/Q‐type Ca2+ channels. In agreement with this, GLP‐1 and ω‐agatoxin (a blocker of P/Q‐type channels) inhibited glucagon secretion in islets depolarized by 70 mmol/L [K+]o, and these effects were not additive. Intracellular application of cAMP inhibited depolarization‐evoked exocytosis in individual α‐cells by a PKA‐dependent (Rp‐cAMPS‐sensitive) mechanism. We propose that inhibition of glucagon secretion by GLP‐1 involves activation of the few GLP‐1 receptors present in the α‐cell membrane. The resulting small elevation of cAMP leads to PKA‐dependent inhibition of P/Q‐type Ca2+ channels and suppression of glucagon exocytosis

    GLP-1 suppresses glucagon secretion in human pancreatic alpha-cells by inhibition of P/Q-type Ca2+ channels

    No full text
    Glucagon is the body's main hyperglycemic hormone, and its secretion is dysregulated in type 2 diabetes mellitus (T2DM). The incretin hormone glucagon‐like peptide‐1 (GLP‐1) is released from the gut and is used in T2DM therapy. Uniquely, it both stimulates insulin and inhibits glucagon secretion and thereby lowers plasma glucose levels. In this study, we have investigated the action of GLP‐1 on glucagon release from human pancreatic islets. Immunocytochemistry revealed that only &lt;0.5% of the α‐cells possess detectable GLP‐1R immunoreactivity. Despite this, GLP‐1 inhibited glucagon secretion by 50–70%. This was due to a direct effect on α‐cells, rather than paracrine signaling, because the inhibition was not reversed by the insulin receptor antagonist S961 or the somatostatin receptor‐2 antagonist CYN154806. The inhibitory effect of GLP‐1 on glucagon secretion was prevented by the PKA‐inhibitor Rp‐cAMPS and mimicked by the adenylate cyclase activator forskolin. Electrophysiological measurements revealed that GLP‐1 decreased action potential height and depolarized interspike membrane potential. Mathematical modeling suggests both effects could result from inhibition of P/Q‐type Ca2+ channels. In agreement with this, GLP‐1 and ω‐agatoxin (a blocker of P/Q‐type channels) inhibited glucagon secretion in islets depolarized by 70 mmol/L [K+]o, and these effects were not additive. Intracellular application of cAMP inhibited depolarization‐evoked exocytosis in individual α‐cells by a PKA‐dependent (Rp‐cAMPS‐sensitive) mechanism. We propose that inhibition of glucagon secretion by GLP‐1 involves activation of the few GLP‐1 receptors present in the α‐cell membrane. The resulting small elevation of cAMP leads to PKA‐dependent inhibition of P/Q‐type Ca2+ channels and suppression of glucagon exocytosis

    GLP-1 inhibits and adrenaline stimulates glucagon release by differential modulation of N- and L-type Ca2+ channel-dependent exocytosis.

    Get PDF
    Glucagon secretion is inhibited by glucagon-like peptide-1 (GLP-1) and stimulated by adrenaline. These opposing effects on glucagon secretion are mimicked by low (1-10 nM) and high (10 muM) concentrations of forskolin, respectively. The expression of GLP-1 receptors in alpha cells is &lt;0.2% of that in beta cells. The GLP-1-induced suppression of glucagon secretion is PKA dependent, is glucose independent, and does not involve paracrine effects mediated by insulin or somatostatin. GLP-1 is without much effect on alpha cell electrical activity but selectively inhibits N-type Ca(2+) channels and exocytosis. Adrenaline stimulates alpha cell electrical activity, increases [Ca(2+)](i), enhances L-type Ca(2+) channel activity, and accelerates exocytosis. The stimulatory effect is partially PKA independent and reduced in Epac2-deficient islets. We propose that GLP-1 inhibits glucagon secretion by PKA-dependent inhibition of the N-type Ca(2+) channels via a small increase in intracellular cAMP ([cAMP](i)). Adrenaline stimulates L-type Ca(2+) channel-dependent exocytosis by activation of the low-affinity cAMP sensor Epac2 via a large increase in [cAMP](i)
    corecore