86 research outputs found

    Comparison of phase characteristics and residual stresses in ti-6al-4v alloy manufactured by laser powder bed fusion (L-pbf) and electron beam powder bed fusion (eb-pbf) techniques

    Get PDF
    Ti-6Al-4V alloy fabricated by laser powder bed fusion (L-PBF) and electron beam powder bed fusion (EB-PBF) techniques have been studied for applications ranging from medicine to aviation. The fabrication technique is often selected based on the part size and fabrication speed, while less attention is paid to the differences in the physicochemical properties. Especially, the relationship between the evolution of α, α’, and β phases in as-grown parts and the fabrication techniques is unclear. This work systematically and quantitatively investigates how L-PBF and EB-PBF and their process parameters affect the phase evolution of Ti-6Al-4V and residual stresses in the final parts. This is the first report demonstrating the correlations among measured parameters, indicating the lattice strain reduces, and c/a increases, shifting from an α’ to α+β or α structure as the crystallite size of the α or α’ phase increases. The experimental results combined with heat-transfer simulation indicate the cooling rate near the β transus temperature dictates the resulting phase characteristics, whereas the residual stress depends on the cooling rate immediately below the solidification temperature. This study provides new insights into the previously unknown differences in the α, α’, and β phase evolution between L-PBF and EB-PBF and their process parameters.Takase A., Ishimoto T., Morita N., et al. Comparison of phase characteristics and residual stresses in ti-6al-4v alloy manufactured by laser powder bed fusion (L-pbf) and electron beam powder bed fusion (eb-pbf) techniques. Crystals, 11, 7, 796. https://doi.org/10.3390/cryst11070796

    Influence of Input Energy Density on Morphology of Unique Layered Microstructure of γ-TiAl Alloys Fabricated by Electron Beam Powder Bed Fusion

    Full text link
    Microstructure and tensile properties of Ti–48Al–2Cr–2Nb (at%) rods fabricated by electron beam powder bed fusion (EB-PBF) process were investigated by changing input energy density (ED) which is one of the important factors affecting formation of the melt pool. We found that unique layered microstructure consisting of an equiaxed γ grain layer (γ band) and a duplex region can be formed by EB-PBF with ED in the range of 13 to 31 J/mm3. It is interesting to note that the width of the γ band and the volume fraction of the γ phase in the duplex region decrease with increasing ED. On the other hand, the α2/γ lamellar grain in the duplex region increases with increasing ED. These morphological changes in the layered microstructure are attributed to variation of temperature distribution from melt pool caused by increasing ED. Moreover, we also found for the first time the strength of the alloys can be improved by decreasing width of the γ band and increasing of the α2/γ lamellar grain in the duplex region. Whereas, the width of the γ band and the fraction of the equiaxed γ grain in the duplex region should be increased to enhance ductility of the alloys.Cho Ken, Morita Naohide, Matsuoka Hiromasa, et al. Influence of Input Energy Density on Morphology of Unique Layered Microstructure of γ-TiAl Alloys Fabricated by Electron Beam Powder Cho Ken, Morita Naohide, Matsuoka Hiromasa, et al. Influence of Input Energy Density on Morphology of Unique Layered Microstructure of γ-TiAl Alloys Fabricated by Electron Beam Powder Bed Fusion. MATERIALS TRANSACTIONS 64, 44 (2023); https://doi.org/10.2320/matertrans.MT-MLA2022015

    Usefulness of right ventriculography compared with computed tomography for ruling out the possibility of lead perforation before lead extraction

    Get PDF
    Purpose High-risk patients can be identified by preprocedural computed tomography (CT) before lead extraction. However, CT evaluation may be difficult especially for lead tip identification due to artifacts in the leads. Selective right ventriculography (RVG) may enable preprocedural evaluation of lead perforation. We investigated the efficacy of RVG for identifying right ventricular (RV) lead perforation compared with CT in patients who underwent lead extraction. Methods Ninety-five consecutive patients who were examined by thin-section non-ECG-gated multi-detector CT and RVG before lead extraction were investigated retrospectively. Newly recognized pericardial effusion after lead extraction was used as a reference standard for lead perforation. We analyzed the prevalence of RV lead perforation diagnosed by each method. The difference in the detection rates of lead perforation by RVG and CT was evaluated. Results Of the 115 RV leads in the 95 patients, lead perforation was diagnosed for 35 leads using CT, but the leads for 29 (83%) of those 35 leads diagnosed as lead perforation by CT were shown to be within the right ventricle by RVG. Three patients with 5 leads could not be evaluated by CT due to motion artifacts. The diagnostic accuracies of RVG and CT were significantly different (p < 0.001). There was no complication of pericardial effusion caused by RV lead extraction. Conclusion RVG for identification of RV lead perforation leads to fewer false-positives compared to non-ECG-gated CT. However, even in cases in which lead perforation is diagnosed, most leads may be safely extracted by transvenous lead extraction

    Detection of a Fully-resolved Compton Shoulder of the Iron K-alpha Line in the Chandra X-ray Spectrum of GX 301-2

    Full text link
    We report the detection of a fully-resolved, Compton-scattered emission line in the X-ray spectrum of the massive binary GX 301-2 obtained with the High Energy Transmission Grating Spectrometer onboard the Chandra X-ray Observatory. The iron K-alpha fluorescence line complex observed in this system consists of an intense narrow component centered at an energy of E = 6.40 keV and a redward shoulder that extends down to ~6.24 keV, which corresponds to an energy shift of a Compton back-scattered iron K-alpha photon. From detailed Monte Carlo simulations and comparisons with the observed spectra, we are able to directly constrain the physical properties of the scattering medium, including the electron temperature and column density, as well as an estimate for the metal abundance.Comment: 13 pages, 4 figures, 1 table, accepted for publication in ApJ Lette

    Magnetized Fast Isochoric Laser Heating for Efficient Creation of Ultra-High-Energy-Density States

    Full text link
    The quest for the inertial confinement fusion (ICF) ignition is a grand challenge, as exemplified by extraordinary large laser facilities. Fast isochoric heating of a pre-compressed plasma core with a high-intensity short-pulse laser is an attractive and alternative approach to create ultra-high-energy-density states like those found in ICF ignition sparks. This avoids the ignition quench caused by the hot spark mixing with the surrounding cold fuel, which is the crucial problem of the currently pursued ignition scheme. High-intensity lasers efficiently produce relativistic electron beams (REB). A part of the REB kinetic energy is deposited in the core, and then the heated region becomes the hot spark to trigger the ignition. However, only a small portion of the REB collides with the core because of its large divergence. Here we have demonstrated enhanced laser-to-core energy coupling with the magnetized fast isochoric heating. The method employs a kilo-tesla-level magnetic field that is applied to the transport region from the REB generation point to the core which results in guiding the REB along the magnetic field lines to the core. 7.7 ±\pm 1.3 % of the maximum coupling was achieved even with a relatively small radial area density core (ρR\rho R \sim 0.1 g/cm2^2). The guided REB transport was clearly visualized in a pre-compressed core by using Cu-KαK_\alpha imaging technique. A simplified model coupled with the comprehensive diagnostics yields 6.2\% of the coupling that agrees fairly with the measured coupling. This model also reveals that an ignition-scale areal density core (ρR\rho R \sim 0.4 g/cm2^2) leads to much higher laser-to-core coupling (>> 15%), this is much higher than that achieved by the current scheme

    Model experiment of magnetic field amplification in laser-produced plasmas via the Richtmyer-Meshkov instability

    Get PDF
    A model experiment of magnetic field amplification (MFA) via the Richtmyer-Meshkov instability (RMI) in supernova remnants (SNRs) was performed using a high-power laser. In order to account for very-fast acceleration of cosmic rays observed in SNRs, it is considered that the magnetic field has to be amplified by orders of magnitude from its background level. A possible mechanism for the MFA in SNRs is stretching and mixing of the magnetic field via the RMI when shock waves pass through dense molecular clouds in interstellar media. In order to model the astrophysical phenomenon in laboratories, there are three necessary factors for the RMI to be operative: a shock wave, an external magnetic field, and density inhomogeneity. By irradiating a double-foil target with several laser beams with focal spot displacement under influence of an external magnetic field, shock waves were excited and passed through the density inhomogeneity. Radiative hydrodynamic simulations show that the RMI evolves as the density inhomogeneity is shocked, resulting in higher MFA

    Demonstration of a spherical plasma mirror for the counter-propagating kilojoule-class petawatt LFEX laser system

    Full text link
    A counter-propagating laser-beam platform using a spherical plasma mirror was developed for the kilojoule-class petawatt LFEX laser. The temporal and spatial overlaps of the incoming and redirected beams were measured with an optical interferometer and an x-ray pinhole camera. The plasma mirror performance was evaluated by measuring fast electrons, ions, and neutrons generated in the counter-propagating laser interaction with a Cu-doped deuterated film on both sides. The reflectivity and peak intensity were estimated as ∼50% and ∼5 × 1018 W/cm2, respectively. The platform could enable studies of counter-streaming charged particles in high-energy-density plasmas for fundamental and inertial confinement fusion research.Kojima S., Abe Y., Miura E., et al. Demonstration of a spherical plasma mirror for the counter-propagating kilojoule-class petawatt LFEX laser system. Optics Express 30, 43491 (2022); https://doi.org/10.1364/oe.475945

    Prospective Study on the Association between Harm Avoidance and Postpartum Depressive State in a Maternal Cohort of Japanese Women

    Get PDF
    BACKGROUND: Recent studies have displayed increased interest in examining the relationship between personality traits and the onset, treatment response patterns, and relapse of depression. This study aimed to examine whether or not harm avoidance (HA) was a risk factor for postpartum depression measured by the Edinburgh Postnatal Depression Scale (EPDS) and the state dependency of HA. METHODS: Pregnant women (n=460; mean age 31.9±4.2 years) who participated in a prenatal program completed the EPDS as a measure of depressive state and the Temperament and Character Inventory (TCI) as a measure of HA during three periods: early pregnancy (T1), late pregnancy (around 36 weeks), and 1 month postpartum (T2). Changes in EPDS and HA scores from T1 to T2 were compared between the non depressive (ND) group and the postpartum depressive (PD) group. RESULTS: There was no significant difference in the level of HA between the ND and PD groups at T1. In the ND group, EPDS and HA scores did not change significantly from T1 to T2. In the PD group, both scores increased significantly from T1 to T2 (EPDS, p<0.0001; HA, p<0.048). In the ND and PD groups, a significant positive correlation was observed in changes in EPDS and HA scores from T1 to T2 (r=0.31, p=0.002). CONCLUSIONS: These results suggest that HA cannot be considered a risk factor for the development of postpartum depression measured by EPDS. Furthermore, HA may be state dependent
    corecore