4 research outputs found

    Structure/activity relationships applied to the hydrogenation of α,β-unsaturated carbonyls: The hydrogenation of 3-butyne-2-one over alumina-supported palladium catalysts

    Get PDF
    The gas phase hydrogenation of 3-butyne-2-one, an alkynic ketone, over two alumina-supported palladium catalysts is investigated using infrared spectroscopy in a batch reactor at 373 K. The mean particle size of the palladium crystallites of the two catalysts are comparable (2.4 ± 0.1 nm). One catalyst (Pd(NO3)2/Al2O3) is prepared from a palladium(II) nitrate precursor, whereas the other catalyst (PdCl2/Al2O3) is prepared using palladium(II) chloride as the Pd precursor compound. A three-stage sequential process is observed with the Pd(NO3)2/Al2O3 catalyst facilitating complete reduction all the way through to 2-butanol. However, hydrogenation stops at 2-butanone with the PdCl2/Al2O3 catalyst. The inability of the PdCl2/Al2O3 catalyst to reduce 2-butanone is attributed to the inaccessibility of edge sites on this catalyst, which are blocked by chlorine retention originating from the catalyst’s preparative process. The reaction profiles observed for the hydrogenation of this alkynic ketone are consistent with the site-selective chemistry recently reported for the hydrogenation of crotonaldehyde, an alkenic aldehyde, over the same two catalysts. Thus, it is suggested that a previously postulated structure/activity relationship may be generic for the hydrogenation of α,β-unsaturated carbonyl compounds over supported Pd catalysts

    Mechanistic insight into the application of alumina-supported Pd catalysts for the hydrogenation of nitrobenzene to aniline

    Get PDF
    Two Pd/γ-Al2O3 catalysts are examined for the vapor phase hydrogenation of nitrobenzene over the temperature range of 60–200 °C. A 1 wt % catalyst is selected as a reference material that is diluted with γ-alumina to produce a 0.3 wt % sample, which is representative of a metal loading linked to a candidate industrial specification aniline synthesis catalyst. Cyclohexanone oxime is identified as a by-product that is associated with reagent transformation. Temperature-programed infrared spectroscopy and temperature-programed desorption measurements of chemisorbed CO provide information on the morphology of the crystallites of the higher Pd loading catalyst. The lower Pd loading sample exhibits a higher aniline selectivity by virtue of minimization of product overhydrogenation. Reaction testing measurements that were undertaken employing elevated hydrogen flow rates lead to the proposition of separate reagent and product-derived by-product formation pathways, each of which occurs in a consecutive manner. A global reaction scheme is proposed that defines the by-product distribution accessible by the grades of catalyst examined. This information is helpful in defining product purification procedures that would be required in certain heat recovery scenarios connected with large-scale aniline production

    Towards high selectivity aniline synthesis catalysis at elevated temperatures

    No full text
    [Image: see text] In connection with an initiative to enhance heat recovery from the large-scale operation of a heterogeneously catalyzed nitrobenzene hydrogenation process to produce aniline, it is necessary to operate the process at elevated temperatures (>100 °C), a condition that can compromise aniline selectivity. Alumina-supported palladium catalysts are selected as candidate materials that can provide sustained aniline yields at elevated temperatures. Two Pd/Al(2)O(3) catalysts are examined that possess comparable mean Pd particle sizes (∼5 nm) for different Pd loading: 5 wt % Pd/Al(2)O(3) and 0.3 wt % Pd/Al(2)O(3). The higher Pd loading sample represents a reference catalyst for which the Pd crystallite morphology has previously been established. The lower Pd loading technical catalyst more closely corresponds to industrial specifications. The morphology of the Pd crystallites of the 0.3 wt % Pd/Al(2)O(3) sample is explored by means of temperature-programmed infrared spectroscopy of chemisorbed CO. Reaction testing over the range of 60–180 °C shows effectively complete nitrobenzene conversion for both catalysts but with distinction in their selectivity profiles. The low loading catalyst is favored as it maximizes aniline selectivity and avoids the formation of overhydrogenated products. A plot of aniline yield as a function of WHSV for the 0.3 wt % Pd/Al(2)O(3) catalyst at 100 °C yields a “volcano” like curve, indicating aniline selectivity to be sensitive to residence time. These observations are brought together to provide an indication of an aniline synthesis catalyst specification suited to a unit operation equipped for enhanced heat transfer
    corecore