90 research outputs found

    A case of refractory systemic lupus erythematosus with monocytosis exhibiting somatic KRAS mutation

    Get PDF
    BACKGROUND: Systemic lupus erythematosus (SLE), an autoimmune disorder that damages various organ systems, is caused by a combination of genetic and environmental factors. Although germline mutations of several genes are known to cause juvenile SLE, most of the susceptibility genetic variants of adult SLE are common variants of the population, somatic mutations that cause or exacerbate SLE have not been reported. We hereby report a refractory SLE case with monocytosis accompanying somatic KRAS mutation that have been shown to cause lupus-like symptoms. CASE PRESENTATION: A 60-year-old female patient who had been diagnosed with SLE was admitted to our hospital. Although prednisolone and tacrolimus treatments had kept her thrombocytopenia and anti-DNA Ab level at bay for more than 4 years, a diagnosis of transverse myelitis was made when she became acutely ill with pleocytosis. Elevated cells (predominately monocytes), protein, IgG, and IL-6 levels were also found in the cerebrospinal fluid (CSF) of the patient. Standard pulse treatments of methylprednisolone, high-dose of prednisolone, and intravenous cyclophosphamide in combination with plasma exchange could not alleviate the refractory neural and autoimmune manifestation. Monocytosis of peripheral blood was also noted. Flow cytometric analysis revealed elevated ratio of CD14+CD16+ atypical monocytes, which excluded the possibility of chronic myelomonocytic leukemia. Lupus-like symptoms with monocytosis reminded us of Ras-associated autoimmune leukoproliferative disorder, and Sanger sequencing of KRAS and NRAS genes from the patients' peripheral blood mononuclear cells (PBMC), sorted CD3+ lymphocytes and CD14+ monocytes, and cerebrospinal fluid were performed. An activating KRAS somatic mutation was found in the patients' DNA at the time of encephalomyelitis diagnosis. CONCLUSION: Somatic mutations of some genes including KRAS may cause the refractoriness of SLE

    Positive and negative regulation of the Fcγ receptor–stimulating activity of RNA-containing immune complexes by RNase

    Get PDF
    The U1RNP complex, Ro/SSA, and La/SSB are major RNA-containing autoantigens. Immune complexes (ICs) composed of RNA-containing autoantigens and autoantibodies are suspected to be involved in the pathogenesis of some systemic autoimmune diseases. Therefore, RNase treatment, which degrades RNA in ICs, has been tested in clinical trials as a potential therapeutic agent. However, no studies to our knowledge have specifically evaluated the effect of RNase treatment on the Fcγ receptor–stimulating (FcγR-stimulating) activity of RNA-containing ICs. In this study, using a reporter system that specifically detects FcγR-stimulating capacity, we investigated the effect of RNase treatment on the FcγR-stimulating activity of RNA-containing ICs composed of autoantigens and autoantibodies from patients with systemic autoimmune diseases such as systemic lupus erythematosus. We found that RNase enhanced the FcγR-stimulating activity of Ro/SSA- and La/SSB-containing ICs, but attenuated that of the U1RNP complex–containing ICs. RNase decreased autoantibody binding to the U1RNP complex, but increased autoantibody binding to Ro/SSA and La/SSB. Our results suggest that RNase enhances FcγR activation by promoting the formation of ICs containing Ro/SSA or La/SSB. Our study provides insights into the pathophysiology of autoimmune diseases involving anti-Ro/SSA and anti-La/SSB autoantibodies, and into the therapeutic application of RNase treatment for systemic autoimmune diseases.Naito R., Ohmura K., Higuchi S., et al. Positive and negative regulation of the Fcγ receptor–stimulating activity of RNA-containing immune complexes by RNase. JCI Insight 8, e167799 (2023); https://doi.org/10.1172/jci.insight.167799

    Medium-term impact of the SARS-CoV-2 mRNA vaccine against disease activity in patients with systemic lupus erythematosus

    Get PDF
    全身性エリテマトーデスへのコロナワクチンの影響を分析 --中期的な疾患活動性と再燃への影響について--. 京都大学プレスリリース. 2022-10-25.OBJECTIVES: Numerous case reports have referred to new onset or flare of SLE after SARS-CoV-2 messenger RNA (mRNA) vaccines. Several observational studies showed that the short-term flare rate of SLE after SARS-CoV-2 vaccination is low. However, well-controlled clinical surveys are unavailable and the medium-term impact of the SARS-CoV-2 mRNA vaccines against the flare of SLE is uncertain. Therefore, we aimed to analyse the association between vaccination and medium-term subjective and objective disease activities of SLE and flares using matched pair methods. METHODS: Altogether, 150 patients with SLE from the Kyoto Lupus Cohort were included. Patients who received two doses of the SARS-CoV-2 mRNA vaccines were 1:1 matched with unvaccinated patients based on the first vaccination date. The outcome measures were the SLE Disease Activity Index-2000 (SLEDAI-2K), the Japanese version of the SLE Symptom Checklist Questionnaire (SSC-J) and the Safety of Estrogens in Lupus Erythematosus National Assessment-SLEDAI flare index at 30, 60 and 90 days after vaccination. RESULTS: SLEDAI-2K levels were not significantly different in vaccinated and unvaccinated patients with SLE at 30, 60 and 90 days after the second vaccination (adjusted estimate (95% CI): 30 days: -0.46 (-1.48 to 0.56), p=0.39; 60 days: 0.38 (-0.64 to 1.40), p=0.47; 90 days: 0.40 (-0.54 to 1.34), p=0.41). Similar results were observed in the SSC-J score (adjusted estimate (95% CI), 30 days: 0.05 (-1.46 to 1.56), p=0.95; 60 days: -0.63 (-2.08 to 0.82), p=0.40; 90 days: 0.27 (-1.04 to 1.58), p=0.69) and flare index (adjusted OR (95% CI), 30 days: 0.81 (0.36 to 1.85), p=0.62; 60 days: 1.13 (0.50 to 2.54), p=0.77; 90 days: 0.85 (0.32 to 2.26), p=0.74). CONCLUSION: SARS-CoV-2 vaccination did not significantly influence the medium-term subjective and objective disease activities or flares of SLE until 90 days after the second vaccination

    The clinical features of pulmonary artery involvement in Takayasu arteritis and its relationship with ischemic heart diseases and infection

    Get PDF
    BACKGROUND: Pulmonary artery involvement (PAI) in Takayasu arteritis (TAK) can lead to severe complications, but the relationship between the two has not been fully clarified. METHODS: We retrospectively investigated 166 consecutive patients with TAK who attended Kyoto University Hospital from 1997 to 2018. The demographic data, clinical symptoms and signs, comorbidities, treatments, and imaging findings were compared between patients with and without PAI. TAK was diagnosed based on the American College of Rheumatology Classification Criteria (1990) or the Japanese Clinical Diagnostic Criteria (2008). PAI was identified using enhanced computed tomography, magnetic resonance imaging, or lung scintigraphy. RESULTS: PAI was detected in 14.6% (n = 24) of total TAK patients. Dyspnea (25.0% vs. 8.6%; p = 0.043), pulmonary arterial hypertension (PAH) (16.7% vs. 0.0%; p < 0.001), ischemic heart disease (IHD) (29% vs. 9.3%; p = 0.018), respiratory infection (25.0% vs. 6.0%; p = 0.009), and nontuberculous mycobacteria (NTM) infection (20.8% vs. 0.8%; p < 0.001) were significantly more frequent, and renal artery stenosis (0% vs. 17%; p = 0.007) was significantly less frequent in TAK patients with PAI than in those without PAI. PAI and biologics were risk factors for NTM. CONCLUSIONS: TAK patients with PAI more frequently have dyspnea, PAH, IHD, and respiratory infection, including NTM, than TAK patients without PAI

    Urinary sodium-to-potassium ratio associates with hypertension and current disease activity in patients with rheumatoid arthritis: a cross-sectional study

    Get PDF
    BACKGROUND: Excessive salt intake is thought to exacerbate both development of hypertension and autoimmune diseases in animal models, but the clinical impact of excessive salt in rheumatoid arthritis (RA) patients is still unknown. We performed a cross-sectional study to clarify the associations between salt load index (urinary sodium-to-potassium ratio (Na/K ratio)), current disease activity, and hypertension in an RA population. METHODS: Three hundred thirty-six participants from our cohort database (KURAMA) were enrolled. We used the spot urine Na/K ratio as a simplified index of salt loading and used the 28-Joint RA Disease Activity Score (DAS28-ESR) as an indicator of current RA disease activity. Using these indicators, we evaluated statistical associations between urinary Na/K ratio, DAS28-ESR, and prevalence of hypertension. RESULTS: Urinary Na/K ratio was positively associated with measured systolic and diastolic blood pressure and also with prevalence of hypertension even after covariate adjustment (OR 1.34, p <  0.001). In addition, increased urinary Na/K ratio was significantly and positively correlated with DAS28-ESR in multiple regression analysis (estimate 0.12, p <  0.001), as was also the case in gender-separated and prednisolone-separated sub-analyses. CONCLUSION: Urinary Na/K ratio was independently associated with current disease activity as well as with prevalence of hypertension in RA patients. Thus, dietary modifications such as salt restriction and potassium supplementation should be investigated as a potential candidate for attenuating both disease activity and hypertension in RA patients

    Biomarkers identified by serum metabolomic analysis to predict biologic treatment response in rheumatoid arthritis patients

    Get PDF
    Objectives. Biologic treatment has recently revolutionized the management of RA. Despite this success, ∼30-40% of the patients undergoing biologic treatment respond insufficiently. The aim of this study was to identify several specific reliable metabolites for predicting the response of RA patients to TNF-α inhibitors (TNFi) and abatacept (ABT), using capillary electrophoresis-time-of-flight mass spectrometry (CE-TOFMS). Methods. We collected serum from RA patients with moderate or high disease activity prior to biologic treatment, and obtained the serum metabolomic profiles of these samples using CE-TOFMS. The patients' response was determined 12 weeks after starting biologic treatment, according to the EULAR response criteria. We compared the metabolites between the response and non-response patient groups and analysed their discriminative ability. Results. Among 43 total patients, 14 of 26 patients in the TNFi group and 6 of 17 patients in the ABT group responded to the biologic treatment. Of the metabolites separated by CE-TOFMS, 196 were identified as known substances. Using an orthogonal partial least-squares discriminant analysis, we identified five metabolites as potential predictors of TNFi responders and three as predictors of ABT responders. Receiver operating characteristic analyses for multiple biomarkers revealed an area under the curve (AUC) of 0.941, with a sensitivity of 85.7% and specificity of 100% for TNFi, and an AUC of 0.985, with a sensitivity of 100% and specificity of 90.9% for ABT. Conclusion. By metabolomic analysis, we identified serum biomarkers that have a high ability to predict the response of RA patients to TNFi or ABT treatment

    Myeloid-derived suppressor cells in non-neoplastic inflamed organs

    Get PDF
    Abstract Background Myeloid-derived suppressor cells (MDSCs) are a highly heterogeneous population of immature myeloid cells with immunosuppressive function. Although their function in tumor-bearing conditions is well studied, less is known about the role of MDSCs in various organs under non-neoplastic inflammatory conditions. Main body MDSCs are divided into two subpopulations, G-MDSCs and M-MDSCs, and their distribution varies between organs. MDSCs negatively control inflammation in inflamed organs such as the lungs, joints, liver, kidneys, intestines, central nervous system (CNS), and eyes by suppressing T cells and myeloid cells. MDSCs also regulate fibrosis in the lungs, liver, and kidneys and help repair CNS injuries. MDSCs in organs are plastic and can differentiate into osteoclasts and tolerogenic dendritic cells according to the microenvironment under non-neoplastic inflammatory conditions. Conclusion This article summarizes recent findings about MDSCs under inflammatory conditions, especially with respect to their function and differentiation in specific organs

    S100A12 facilitates osteoclast differentiation from human monocytes.

    Get PDF
    Osteoclasts play a critical role not only in bone homeostasis but also in inflammatory osteolysis, such as that occurring in inflammatory arthritis and systemic inflammation. In both inflammation conditions, inflammatory cytokines like Interleukin (IL)-1, IL-6 and tumor necrosis factor (TNF)-α induce RANKL expression in osteoblasts, but the roles of these cytokines in osteoclast activation remain unclear. S100A12, an S100 family member, is a low-molecular-weight calcium-binding protein. Although it has a pro-inflammatory role, its effects on osteoclast differentiation have been unclear. Here we examined the direct effects of S100A12 on human osteoclasts in vitro. S100A12 facilitated osteoclast formation in the presence of RANKL, as judged by the cells' morphology and elevated expression of osteoclast-related molecules, including NFATc1, ACP5, CALCR, and ITGβ3. In addition, S100A12 administration markedly enhanced the osteoclasts' bone resorption ability, consistent with their increased expression levels of CTSK and CA2. Blocking RAGE and TLR4 cancelled the effects of S100A12. Our results indicate that S100A12 is a potential therapeutic target for inflammatory osteolysis

    Tofacitinib facilitates the expansion of myeloid-derived suppressor cells and ameliorates interstitial lung disease in SKG mice

    Get PDF
    Background Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is a sometimes life-threatening complication in RA patients. SKG mice develop not only arthritis but also an ILD resembling RA-ILD. We previously reported that tofacitinib, a JAK inhibitor, facilitates the expansion of myeloid-derived suppressor cells (MDSCs) and ameliorates arthritis in SKG mice. The aim of this study was to elucidate the effect of tofacitinib on the ILD in SKG mice. Methods We assessed the effect of tofacitinib on the zymosan (Zym)-induced ILD in SKG mice histologically and examined the cells infiltrating the lung by flow cytometry. The effects of lung MDSCs on T cell proliferation and Th17 cell differentiation were assessed in vitro. We also evaluated the effects of tofacitinib on MDSCs and dendritic cells in vitro. Results Tofacitinib significantly suppressed the progression of ILD compared to the control SKG mice. The MDSCs were increased, while Th17 cells, group 1 innate lymphoid cells (ILC1s), and GM-CSF+ILCs were decreased in the lungs of tofacitinib-treated mice. MDSCs isolated from the inflamed lungs suppressed T cell proliferation and Th17 cell differentiation in vitro. Tofacitinib promoted MDSC expansion and suppressed bone marrow-derived dendritic cell (BMDC) differentiation in vitro. Conclusion Tofacitinib facilitates the expansion of MDSCs in the lung and ameliorates ILD in SKG mice
    corecore