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Abstract 

Objectives. Biological treatment has recently revolutionized the management of RA. Despite 

this success, approximately 30-40% of the patients undergoing biological treatment respond 

insufficiently. The aim of this study was to identify several specific reliable metabolites for 

predicting the response of RA patients to TNF-α inhibitors (TNFi) and abatacept (ABT), 

using capillary electrophoresis-time-of-flight mass spectrometry (CE-TOFMS). 

Methods. We collected serum from RA patients with moderate or high disease activity prior 

to biological treatment, and obtained the serum metabolomic profiles of these samples using 

CE-TOFMS. The patients' response was determined 12 weeks after starting biological 

treatment, according to the EULAR response criteria. We compared the metabolites between 

the response and non-response patient groups and analysed their discriminative ability. 

Results. Among 43 total patients, 14 of 26 patients in the TNFi group and 6 of 17 patients in 

the ABT group responded to the biological treatment. Of the metabolites separated by 

CE-TOFMS, 196 were identified as known substances. Using an orthogonal partial 

least-squares discriminant analysis, we identified 5 metabolites as potential predictors of 

TNFi responders and 3 as predictors of ABT responders. Receiver operating characteristic 

analyses for multiple biomarkers revealed an area under the curve (AUC) of 0.941, with a 

sensitivity of 85.7% and specificity of 100% for TNFi, and an AUC of 0.985, with a 

sensitivity of 100% and specificity of 90.9% for ABT. 

Conclusion. By metabolomic analysis, we identified serum biomarkers that have a high 

ability to predict the response of RA patients to TNFi or ABT treatment. 

 

Key words: biomarker, biological treatment, TNF-α inhibitors, abatacept, rheumatoid 

arthritis, metabolomics, CE-TOFMS 

 

 



Rheumatology Key Messages 

・Serum metabolomic analysis was useful for identifying biomarkers for predicting the 

response to biological treatment. 

・Betonicine, glycerol 3-phosphate, N-acetylalanine, hexanoic acid, and taurine were 

associated with the response to TNFi. 

・Citric acid, quinic acid, and 3-aminobutyric acid levels were associated with the response to 

ABT. 

 

Introduction 

RA is a chronic systemic autoimmune disease characterized by immune-cell infiltration and 

proliferation in the synovium, leading to progressive joint destruction. Although the etiology 

of RA is not fully understood, recent evidence indicates that fibroblast-like synoviocytes 

(FLS) play an important role in initiating and driving RA [1]. The intimal lining of the 

synovium displays remarkable changes in RA, with a marked increase in cellularity. 

Hypercellularity is due to an increase in both cell types, namely macrophage-like cells and 

FLS [2]. The macrophage-like cells display a highly activated phenotype and produce 

pro-inflammatory cytokines, chemokines and growth factors. These products can activate 

FLS and induce FLS to produce mediators, especially IL-6, prostanoids and matrix 

metalloproteinases (MMPs). This process establishes a paracrine/ autocrine network that can 

perpetuate synovitis and contribute to destruction of the cartilage and bone tissues [2, 3]. 

Recently, biological agents, predominantly antibodies such as TNF-α inhibitors (TNFi) and 

abatacept (ABT), which target specific inflammatory pathways, have revolutionized the 

management of RA. ABT is a fusion protein of cytotoxic T lymphocyte-associated Antigen 4 

(CTLA-4) and the Fc portion of IgG1. It selectively modulates the interaction of CD80/ 

CD86 on antigen-presenting cells with CD28 on T cell that normally senses the 

co-stimulatory signal required for the full activation of T cell. This results in decreased T cell 



activation and eventually decreased joint inflammation [4]. Despite the success of biological 

treatment, a substantial proportion of the patients (approximately 30–40%) responds 

insufficiently [5]. At the initiation of biological treatment, it is currently impossible to 

distinguish future responders from non-responders; therefore, the treatment is tested by trial 

and error. This approach is inefficient, because the clinical response to biological treatment 

can only be assessed after at least three months of treatment. Within this time-frame, 

non-responders might develop joint damage or experience toxic side effects. Furthermore, 

inefficient treatment increases healthcare costs due to intensive monitoring, increased 

complications, higher morbidity, and medication. Thus, the ability to identify responders and 

non-responders before initiating biological treatment, so the most optimal agent can be 

selected for each patient, is desirable. Toward this goal, many approaches have been explored, 

mostly involving the evaluation of clinical parameters, proteins, or mRNA biomarker profiles, 

but none has been successful enough to be implemented in clinical practice [6]. 

 The relatively new field of metabolomics, which is the comprehensive study of 

low-molecular-weight metabolites, has been steadily advancing. Metabolomics is a rapidly 

developing approach in biomarker research, in which a large number of small-molecule 

metabolites is measured in biological fluids, tissues, and cells. Since metabolism closely 

influences an organism’s phenotype, the characteristics of a disease are thought to more 

closely reflect alterations in the levels of metabolites than changes in gene or protein 

expression [7]; thus, metabolomics may have an advantage over genomics and proteomics in 

identifying biomarkers. Indeed, studies have revealed that metabolomic profiles associated 

with a disease or therapeutic response to treatment can show measurable differences from 

baseline or controls [8, 9]. Thus, metabolomics provides a novel perspective in the search for 

new disease biomarkers and drug targets. 

Though metabolites can be endogenous, including lipids, small peptides, amino acids and 

carbohydrates or exogenous, such as drugs and food additives, lipids, amino acids and 



carbohydrates are the most abundant metabolites in plasma [10]. Alteration of lipid 

metabolism leads to changes in cellular functions such as cell growth and inflammation. 

Carbohydrates have important roles in metabolism and signalling. Increases in glucose uptake 

and glycolysis have been associated with increased cellular proliferation by generating ATP 

and providing substrates for the synthesis of proteins, nucleic acids and lipids. Amino acids 

are nutrients and substrates for macromolecular synthesis. For example, glutamine, which is 

highly abundant in blood, provides nitrogen and carbon for the de novo synthesis of amino 

acids and synthesis of nucleotides through the hexosamine pathway during cellular 

proliferation. Thus, serum metabolites reflect what is happening at the cellular level. 

Metabolomics aims to investigate the overall metabolomic activity, and thus takes into 

account the genetic and environmental background, the effects of which are integrated into 

the results [7]. The extent of metabolic changes and types of metabolites seen may therefore 

be good markers for RA. Metabolomic approaches in RA have already contributed to the 

understanding of RA and its subtypes, as well as the effect of drug treatment [11]. However, 

studies using metabolomic profiling to predict patients’ response to biological treatment are 

limited. Notably, to our knowledge, metabolomics has not been applied to predict the clinical 

response to ABT. In addition, only three previous studies have used metabolomics to predict 

the clinical response to TNFi, two of which used nuclear magnetic resonance (NMR) 

spectroscopy and one used liquid chromatography coupled to mass spectrometry (LC-MS) 

[12, 13, 14]. Although these studies showed that metabolomics was effective for predicting 

the response to TNFi using all the detected metabolites or using a combination of clinical 

parameters and some metabolites, it is expensive to measure all the metabolites, including the 

cost of equipment. Therefore, the ability to predict a patient’s response to biological treatment 

using a limited number of reliable metabolites is desirable.  

 Capillary electrophoresis-time-of-flight mass spectrometry (CE-TOFMS) is a novel and 

promising method that separates and detects ionic compounds based on the different 



migration rates of charged metabolites [15]. Compared to NMR and LC-MS, CE-TOFMS 

requires only a small injection volume and has better resolution. Major advantages of 

CE-TOFMS include its extremely high resolution, versatility, and ability to simultaneously 

quantify virtually all the charged low-molecular-weight compounds in a sample [16]. 

Although the efficacy of CE-TOFMS has been demonstrated in various human clinical 

studies [17, 18], there is no report applying it to RA. 

 The aim of this study was to identify several specific reliable metabolites to predict the 

response of RA patients to TNFi and ABT using CE-TOFMS, a more sophisticated technique 

than those used in previous TNFi metabolomics studies. In addition, this is the first report to 

identify serum biomarkers to predict the clinical response to ABT using metabolomic 

analysis. 

 

Methods. 

Patients 

Patients with a diagnosis of RA according to the ACR criteria [19] and designated to start 

TNFi, such as etanercept, golimumab, infliximab, certolizumab pegol, and adalimumab, or 

ABT were prospectively enrolled from Kobe University Hospital. Allocation of biological 

treatment was made by discretion of attending physicians. Eligible patients had a DAS in 28 

joints defined as a CRP (DAS28-CRP) greater than 2.7 despite prior treatment with 

disease-modifying antirheumatic drugs (DMARDs) or biological agents, and were about to 

start or switch to biological treatment [20]. ‘Starting biological treatment’ was defined as a 

start of a biological agent in patients not receiving any biological agents. ‘Switching to 

biological treatment’ was defined as a change to another biological agent in patients who had 

been receiving a biological agent, due to treatment failure or side effects. When switching to 

biological treatment, we started a new biologic agent after the period of administration 

interval of the previous biological agent. The disease activity was assessed by DAS28-CRP 



before and 12 weeks after starting the biological treatment regimen. According to the 

EULAR-CRP response criteria [21], we classified the RA patients as responders (good 

response) and non-responders (moderate or no response) 12 weeks after starting the 

biological treatment regimen. This study was approved by the Ethics Committee of Kobe 

University Hospital and complied with the principles of the Declaration of Helsinki. All 

patients provided written informed consent. 

 

Peripheral blood sample collection 

We collected fasting serum samples of the RA patients prior to starting or switching to 

biological treatment. The samples were allowed to stand at room temperature for 1 h, and 

were then centrifuged at 2000g for 10 min at room temperature to obtain the sera. The 

supernatant was stored in aliquots at −80 °C until further use. All samples used for the 

present study were allowed to undergo no more than two freeze/thaw cycles. 

 

Metabolite extraction 

The metabolite extraction and metabolomic analysis were conducted at Human Metabolome 

Technologies (HMT), Tsuruoka, Yamagata, Japan. Briefly, 50 µl of serum was added to 

450 µl of methanol containing internal standards (solution ID: H3304-1002, HMT) at 0 °C 

to inactivate native enzymes. This solution was then thoroughly mixed with 500 µl of 

chloroform and 200 µl of Milli-Q water and centrifuged at 2300g at 4 °C for 5 min. The 

400-µl upper aqueous layer was centrifugally filtered through a Millipore 5-kDa cut-off 

filter to remove proteins. The filtrate was then centrifugally concentrated and re-suspended 

in 25 µl of Milli-Q water for metabolomic analysis at HMT. 

 

Metabolomic analysis 



The metabolomic analysis was conducted using the HMT Advanced Scan package via 

CE-TOFMS, as described previously [22, 23]. Briefly, the CE-TOFMS analysis was carried 

out using an Agilent CE capillary electrophoresis system equipped with an Agilent 6210 

TOFMS, Agilent 1100 isocratic high performance liquid chromatography pump, Agilent 

G1603A CE-MS adapter kit, and Agilent G1607A CE-ESI–MS sprayer kit (Agilent 

Technologies, Waldbronn, Germany). The systems were controlled by Agilent G2201AA 

ChemStation software version B.03.01 for CE and connected by a fused silica capillary 

(50 μm i.d. × 80 cm total length) with a commercial electrophoresis buffer (H3301-1001 and 

H3302-1021 for cation and anion analyses, respectively; HMT) as the electrolyte. The 

spectrometer was scanned from m/z 50 to 1000 [22]. The peaks were extracted using 

MasterHands automatic integration software (Keio University, Tsuruoka, Yamagata, Japan), 

and peak information including the m/z, peak area, and migration time was obtained [24]. 

Signal peaks corresponding to isotopomers, adduct ions, and other product ions of known 

metabolites were excluded, and the remaining peaks were annotated according to the HMT 

metabolite database based on their m/z values and migration times. The areas of the annotated 

peaks were then normalized based on the internal standard levels and sample amounts, to 

obtain the relative level of each metabolite.  

 

Statistical analysis 

Metabolite levels were used to develop a model for predicting a patient’s response to TNFi or 

ABT 12 weeks after starting the treatment regimen. An overview of the analyses is provided 

in Fig. 1 and is presented in detail below. 

First, the normalized peak areas of identified metabolites were filtered, log-transformed, and 

scaled for further analyses. Pareto scaling was used to reduce the selection of features with 

the highest variance. Second, orthogonal partial least squares discriminant analyses 

(OPLS-DA) were used to identify metabolomic signatures that could predict the response to 



TNFi or ABT. Third, to identify the metabolites that contributed to the differentiation 

between responders and non-responders to biological treatment, predictive variable 

importance in projection (VIP) and S-plot were used [25, 26]. Metabolites with a VIP > 2 and 

an absolute value of modelled correlation from the OPLS-DA > 0.5 in the S-plot were 

selected. Although the average of the squared VIP scores equals 1 and “greater than one rule” 

is generally used as a criterion for variable selection, this is not a statistically justified limit 

and therefore we used threshold of 2 for VIP to identify the metabolites that more contributed 

to the group separation. In addition, we used threshold of 0.5 for an absolute value of 

modelled correlation because correlation of 0.5 to 1.0 is generally interpreted as “large” [27]. 

Fourth, prediction models for detecting responders to biological treatment using multiple 

selected biomarkers were constructed with OPLS-DA. The validity of the models was 

assessed by principal component analyses (PCA) using selected multiple biomarkers. 

Receiver operating characteristic (ROC) analyses were then carried out to evaluate the 

usefulness of the prediction model, and 95% confidence intervals (CI) were calculated by 

bootstrapping (N = 20,000). Data were presented as the median (the 1st to 3rd quartile) unless 

otherwise noted. The chi-squared test and Wilcoxon rank sum test were used to compare 

differences in clinical data between responders and non-responders to TNFi or ABT with P < 

0.05 as the level of significance. All the statistical analyses were conducted by R version 

3.2.3 (R Development Core Team, Vienna, Austria). We used “ropols” package for OPLS-DA, 

“pROC” for ROC analyses.  

 

Results. 

Patients with RA 

A total of 43 patients with RA were enrolled, and their characteristics are shown in Table 1, 2. 

Before starting TNFi treatment, all patients had moderate or high RA disease activity, as 

reflected by a median DAS28-CRP of 4.05 (the 1st to 3rd quartile: 3.71 - 4.58). At 12 weeks 



after starting the biological treatment regimen, 14 (53.8%) of the 26 patients treated with 

TNFi were identified as responders. The DAS28-CRP was significantly decreased to 1.92 

(1.25 - 2.32) in the responders, but not to 3.44 (2.97 - 5.19) in the non-responders. 

Before starting ABT treatment, all patients had moderate or high RA disease activity, as 

reflected by a DAS28-CRP of 3.77 (3.45 - 4.50). At 12 weeks after starting the biological 

treatment regimen, 6 (35.3%) of the 17 patients treated with ABT were identified as 

responders. The DAS28-CRP was significantly decreased to 2.23 (2.07 - 2.31) in the 

responders, but not to 3.73 (2.61 - 3.98) in the non-responders.  

 

Distinct clustering of metabolites for responders versus non-responders to biological 

treatment 

In this study, we used CE-TOFMS for comprehensive RA serum metabolomic profiling. A 

total of 564 metabolites were obtained, 196 of which were identified as known substances. 

Using the 196 known metabolites, OPLS-DA revealed a good separation between the serum 

spectra of responders versus non-responders to TNFi or ABT (Fig. 2), indicating that some 

metabolites contributed to a differentiation between responders and non-responders to 

biological treatment. 

 

 

 

Metabolites contributing to the differentiation between responders and non-responders 

to biological treatment 

We next sought to identify the metabolites that contributed to the differentiation between 

responders and non-responders to biological treatment, by VIP and S-plot. Five metabolites 

were selected as key metabolites for classifying responders versus non-responders in the 

TNFi group, and three metabolites were selected in the ABT group (Table 3). The mean 



concentration of betonicine was elevated, while glycerol 3-phosphate, N-acetylalanine, 

hexanoic acid, and taurine were decreased in the responders to TNFi. Citric acid and quinic 

acid were elevated, while 3-aminobutyric acid was decreased in the responders to ABT. These 

metabolites displayed individual area under the ROC curve (AUC) values of 0.679 to 0.800 

in response to TNFi and of 0.765 to 0.864 to ABT.  

 

Effectiveness of using multiple biomarkers for detecting responders to biological 

treatment 

We next used glycerol 3-phosphate, betonicine, N-acetylalanine, hexanoic acid, and taurine as 

multiple biomarkers to detect responders to TNFi, and 3-aminobutyric acid, citric acid, and 

quinic acid to detect responders to ABT. OPLS-DA using these multiple biomarkers revealed 

a good separation between the serum spectra of responders versus non-responders to TNFi or 

ABT (Supplementary Fig. 1), whereas PCA support the validity of these models 

(Supplementary Fig. 2) [28]. The ROC analyses for detecting responders to TNFi using these 

multiple biomarkers revealed an AUC of 0.941 (95% CI: 0.822 to 1.000), with a sensitivity of 

85.7% (95% CI: 70.0 to 100) and specificity of 100% (95% CI: 80.0 to 100), whereas the 

ROC analyses for ABT revealed an AUC of 0.985 (95% CI: 0.914 to 1.000), with a 

sensitivity of 100% (95% CI: 83.3 to 100) and specificity of 90.9% (95% CI: 78.6 to 100), 

suggesting that these multiple biomarkers are useful for detecting responders to biological 

treatment (Fig. 3). When the cut-off values were set to obtain 100% of sensitivity, consequent 

median specificities with 95% CI were 33.3% (95% CI: 8.3 to 66.7) for glycerol 3-phosphate, 

0.0% (95% CI: 0.0 to 0.0) for betonicine, 33.3% (95% CI: 8.3 to 83.3) for N-acetylalanine, 

8.3% (95% CI: 0.0 to 75.0) for hexanoic acid, 33.3% (95% CI: 8.3 to 66.7) for taurine, and 

50.0% (95% CI: 16.7 to 100.0) for multiple biomarkers in TNFi treatment. When similar 

approach was applied to ABT treatment, consequent median specificities were 81.8% (95% 

CI: 54.6 to 100.0) for 3-aminobutyric acid, 45.5% (95% CI: 9.1 to 100.0) for citric acid, 



54.6% (95% CI: 27.3 to 90.9) for quinic acid, and 100.0% (72.7 to 100.0) for multiple 

biomarkers. 

 

Discussion 

In this study, we sought to apply baseline metabolomic profiling using CE-TOFMS to 

identify potential biomarkers for predicting RA-patient responders to TNFi or ABT treatment. 

This is the first report to use CE-TOFMS for measuring serum metabolites of patients with 

RA. We identified five metabolites, betonicine, glycerol 3-phosphate, N-acetylalanine, 

hexanoic acid, and taurine, as multiple biomarkers for a patient response 12 weeks after 

starting TNFi treatment and three metabolites, citric acid, quinic acid, and 3-aminobutyric 

acid, for ABT treatment, with high sensitivity and high specificity, suggesting that these 

multiple biomarkers are useful for detecting responders to biological treatment. In addition, 

this is the first report to identify serum metabolomic biomarkers to predict the response of RA 

patients to ABT. 

To identify the metabolites that contributed to the differentiation between responders and 

non-responders to biological treatment, we used VIP and S-plot. Metabolites with a VIP > 2 

and absolute value of modelled correlation from the OPLS-DA > 0.5 in the S-plot were 

selected. Based on these evaluations, five metabolites for the response to TNFi and three 

metabolites for the response to ABT were selected as metabolite biomarker candidates. These 

metabolites individually displayed low AUC values in response to TNFi or ABT. These 

results indicated that the single metabolite biomarkers were not practical for screening, and 

that the use of multiple biomarkers is likely to be better for distinguishing responders and 

non-responders with high sensitivity and specificity, even though previous metabolomic 

approaches focusing on single biomarkers have been widely applied. 

Several reports show a relationship between taurine and inflammatory disease including 

RA. Taurine is positively correlated with CRP or ESR in RA [29] and is associated with 



oxidative stress [30], suggesting that this metabolite is associated with an inflammatory 

phenotype. Our results showed that taurine levels were low in responders to TNFi, and were 

consistent with previous studies supporting taurine as a candidate biomarker for RA. 

Interestingly, although a higher taurine level was associated with the response to MTX 

treatment in a study by Wang et al. [31], we found the opposite result for a response to TNFi 

treatment, suggesting that taurine may be a candidate biomarker for choosing MTX or TNFi 

for RA treatment. 

Our findings showed that the citrate levels were high in responders to ABT treatment. Van 

Linthoudt et al. showed that the citrate concentrations are significantly lower in the synovial 

fluid of RA patients than in that of osteoarthritis patients [32], and Kapoor et al. showed that 

the urine concentration of citrate in RA patients is increased after infliximab treatment [12]. 

Collectively, citrate appears to be associated with a low inflammatory status in RA. 

Our results also showed that the quinic acid levels were high in responders to ABT 

treatment. Quinic acid is found in plants, particularly in cranberries. Jung et al. showed that 

quinic acid has inhibitory effects on inflammation activation and oxidative stress in 

macrophages [33], and Jang et al. showed that it inhibits MAP kinase and NF-κB signalling 

pathways in vascular smooth muscle cells [34]. However, the role of quinic acid in 

metabolism has not been clearly elucidated, and requires further investigation. 

Glycerol 3-phosphate is an intermediate metabolite of the glycolysis system and is one of 

the constituents of glycerophospholipids. Low levels of glycerol 3-phosphate indicate that 

glycerophospholipid synthesis is activated. However, the association of glycerol 3-phosphate 

with the TNFi treatment response is unknown and requires further investigation. 

Betonicine, N-acetylalanine and 3-aminobutyric acid are amino acids. Hexonic acid, 

commonly referred to as caproic acid, is known as a catalyst for saturated fatty acid 

biosynthesis. The biological functions of these metabolites are largely unknown. Here we 

report that high levels of betonicine and low levels of N- acetylalanine and hexonic acid were 



associated with a response 12 weeks after starting TNFi treatment, and that low levels of 

3-aminobutyric acid were associated with a response to ABT treatment. However, the 

biological functions of these metabolites and their association with the pathology of RA 

require further investigation. Thus, while some of the metabolites we identified as associated 

with the response to biological treatment were previously described as RA-associated 

metabolites, the relationships of the other metabolites in RA were not previously reported. 

Although there is no report on predicting the clinical response to ABT using 

metabolomics, three previous studies used metabolomics to predict the clinical response to 

TNFi in RA patients. Citrate, which was found to predict a response to ABT in our study, was 

found to that to TNFi in one previous study that used urine samples [12], suggesting that 

citrate may be involved in the pathology of RA. On the other hand, the other metabolites that 

we identified as predictors were different from the metabolites identified in the two previous 

reports that used serum samples from RA patients. Several differences in the study design 

compared to our study might explain these apparent discrepancies, such as the different 

analytical platform (technique and targeted panels) and statistical methods applied.  

Several limitations of this study should be acknowledged. First, this study did not validate 

the predictive power of these metabolites using other cohorts. Second, this study only 

presents a preliminary result, as only a limited number of cases were available at the time we 

carried out our experiment. To address these points, we are now conducting a validation 

study in which we are measuring the level of these metabolites using other cohorts. Third, we 

collected blood samples mostly from patients with established RA who were already 

receiving DMARDs or biological treatment and were not at an early stage of RA; thus, our 

study did not include patients that had never been treated for RA and the discrepancies or 

biases might be occurred by concomitant drugs. On the other hand, this study may more 

accurately reflect the situation experienced in real clinical practice. Forth, because we started 

a new biologic agent after the period of administration interval of the previous biological 



agent when switching to biological treatment, the effect of the previous biological DMARD 

may partly influence baseline DAS28-CRP, response, and eventual predictive accuracy both 

in the TNFi and ABT group. 

To the best of our knowledge, this is the first report to use CE-TOFMS as a metabolomic 

technique for measuring the serum metabolites of patients with RA. Furthermore, this is also 

the first report to use metabolomic analysis to identify serum metabolomic biomarkers to 

predict the response to ABT. In this study we identified five metabolites in TNFi and three 

metabolites in ABT that correlated with a response to treatment for RA, with high sensitivity 

and high specificity. When the prediction rule is further validated, non-responders can be 

identified using these biomarkers and offered more suitable treatment, thereby preventing 

joint damage and potentially toxic side-effects, and decreasing healthcare costs. 
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TABLE 1 Baseline characteristics of RA patients, by TNFi treatment group 

Unless where indicated otherwise, continuous variables are described as 

median (the 1st to 3rd quartile) while categorical variables are shown as 

number (percentage). aAccording to the EULAR-CRP response criteria, RA 

patients were classified as responders (good response) and non-responders 

(moderate or no response) 12 weeks after starting biological treatment. bAge 

are shown as mean ± standard deviation. cHAQ-DI data were available for 8 

respondersto TNFi and 7 non-responders.   

TNFi: TNF-α inhibitors. DAS28: DAS in 28 joints. HAQ-DI: HAQ disability 

index for RA. csDMARDs: conventional synthetic DMARDs. 

 

TABLE 2 Baseline characteristics of RA patients, by ABT treatment group 

Unless where indicated otherwise, continuous variables are described as 

median (the 1st to 3rd quartile) while categorical variables are shown as 

number (percentage). aAccording to the EULAR-CRP response criteria, RA 

patients were classified as responders (good response) and non-responders 

(moderate or no response) 12 weeks after starting biological treatment. bAge 

are shown as mean ± standard deviation. cHAQ-DI data were available for 5 



respondersto ABT and 8 non-responders.   

ABT: abatacept. DAS28: DAS in 28 joints. HAQ-DI: HAQ disability index for 

RA. csDMARDs: conventional synthetic DMARDs. 

 

TABLE 3 Metabolites contributing to the differentiation between response 

and non-response to biological treatment assessed using CE-TOFMS 

aExtent of contribution to the differentiation between responders and 

non-responders to biological treatment. b↑ indicates an up-regulation of the 

metabolite in serum samples from patients who had a good response to 

biological treatment. ↓ indicates a down-regulation. cVariable importance of 

the projection (VIP) scores were calculated using OPLS-DA. CE-TOFMS: 

capillary electrophoresis-time-of-flight mass spectrometry. OPLS-DA: 

orthogonal partial least-squares discriminant analysis. TNFi: TNF-α inhibitors. 

ABT: abatacept. 



 
Table 1 for revision. Baseline DAS28-CRP and response proportion by previous 
biological DMARD in the TNFi group 
 Patient with receiving 

previous biological DMARD 
(n=9) 

Patient without receiving 
previous biological DMARD 
(n=17) 

P-value 

Baseline 
DAS28-CRP, median 
(1st to 3rd quartile) 

4.06 (3.42－4.99) 4.04 (3.71 – 4.65) 0.94 

Response proportion, 
no (%) 

5 (55.6) 9 (52.9) 0.90 

 
Table 2 for revision. Baseline DAS28-CRP and response proportion by previous 
biological DMARD in the ABT group 
 Patient with receiving 

previous biological DMARD 
(n=5) 

Patient without receiving 
previous biological DMARD 
(n=12) 

P-value 

Baseline 
DAS28-CRP, median 
(1st to 3rd quartile) 

3.77 (3.51 – 5.12) 3.79(3.29 – 4.40) 0.49 

Response proportion, 
no (%) 

2(40.0) 4 (33.3) 0.79 

  
 
  TNFi response  ABT response 
Rank a Metabolite b   VIP scorec  Metabolite   VIP score 

1 Glycerol 
3-phosphate 

↓ 2.175  3-Aminobutyric acid ↓ 2.594 

2 Betonicine ↑ 2.164  Citric acid ↑ 2.455 
3 N-Acetylalanine ↓ 2.148  Quinic acid ↑ 2.271 
4 Hexanoic acid ↓ 2.097      
5 Taurine ↓ 2.071      

 

TABLE 3 Metabolites contributing to the differentiation between response and 



non-response to biological treatment assessed using CE-TOFMS 

 

 



Figure Legends 

Fig. 1 Flowchart for predicting response to biological treatment 

Fasting serum samples of RA patients with a DAS28-CRP > 2.7 were collected 

prior to starting or switching to biological treatment (n=43). (A) CE-TOFMS was 

used for comprehensive RA serum metabolomic profiling. (B) RA patients were 

classified as responders (good response) and non-responders (moderate or no 

response) according to the EULAR-CRP response criteria 12 weeks after 

starting biological treatment. (C) Metabolites were compared between the 

responders and non-responders within the TNFi and ABT treatment groups. The 

discriminative ability of metabolites, extracted as multiple biomarkers, was 

analysed. DAS28-CRP: DAS in 28 joints using the CRP. CE-TOFMS: capillary 

electrophoresis-time-of-flight mass spectrometry. 

 

Fig. 2 Differentiation between good responders and non-responders to biological 

treatment based on CE-TOFMS metabolomic fingerprinting 

Score plot from OPLS-DA separating responders and non-responders to 

TNFi (A) and ABT (B) using metabolites identified from CE-TOFMS. Fasting 

serum samples of RA patients prior to starting or switching to biological 



treatment were used. The patients’ response was determined 12 weeks after 

starting biological treatment, based on the EULAR-CRP response criteria. 

Circles represent responders, and crosses represent non-responders. 

OPLS-DA: orthogonal partial least-squares discriminant analysis. TNFi: 

TNF-α inhibitors. ABT: abatacept. CE-TOFMS: capillary 

electrophoresis-time-of-flight mass spectrometry. 

 

Fig. 3 ROC curves for detecting responders to biological treatment with multiple 

biomarkers using bootstrapping (N = 20,000) 

ROC curves for the 5 baseline biomarkers (glycerol 3-phosphate, betonicine, 

N-acetylalanine, hexanoic acid, and taurine) to detect responders to TNFi (A) 

and for the 3 baseline biomarkers (3-Aminobutyric acid, citric acid, and quinic 

acid) to detect responders to ABT (B), selected by a predictive VIP > 2 and 

absolute value of modelled correlation from the OPLS-DA > 0.5 in the S-plot. 

ROC: Receiver operating characteristic. TNFi: TNF-α inhibitors. ABT: abatacept. 

VIP: variable importance in projection. OPLS-DA: orthogonal partial 

least-squares discriminant analysis. 
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Supplementary Fig. 1 
Differentiation between good responders and non-responders to biological 
treatment based on multiple biomarkers 

Score plot from OPLS-DA separating responders and non-responders to 
TNFi (A) and ABT (B) using multiple biomarkers. Glycerol 3-phosphate, 
betonicine, N-acetylalanine, hexanoic acid, and taurine were used as 
multiple biomarkers to detect responders to TNFi, whereas 3-aminobutyric 
acid, citric acid, and quinic acid were used to detect responders to ABT. 
Fasting serum samples of RA patients prior to starting or switching to 
biological treatment were used. The patients’ response was determined 12 
weeks after starting biological treatment, based on the EULAR-CRP 
response criteria. Circles represent responders, and crosses represent 
non-responders. OPLS-DA: orthogonal partial least-squares discriminant 
analysis. TNFi: TNF-α inhibitors. ABT: abatacept.  

 
Supplementary Fig. 2 
Validity between good responders and non-responders to biological treatment 
based on multiple biomarkers 
Score plot from PCA separating responders and non-responders to TNFi (A) and 
ABT (B) using multiple biomarkers. Glycerol 3-phosphate, betonicine, 
N-acetylalanine, hexanoic acid, and taurine were used as multiple biomarkers to 
detect responders to TNFi, whereas 3-aminobutyric acid, citric acid, and quinic 
acid were used to detect responders to ABT. Fasting serum samples of RA 
patients prior to starting or switching to biological treatment were used. The 
patients’ response was determined 12 weeks after starting biological treatment, 
based on the EULAR-CRP response criteria. Circles represent responders, and 
crosses represent non-responders. PCA: principal component analyses. TNFi: 
TNF-α inhibitors. ABT: abatacept. 
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