77 research outputs found

    13C NMR study of superconductivity near charge instability realized in beta"-(BEDT-TTF)4[(H3O)Ga(C2O4)3]C6H5NO2

    Full text link
    To investigate the superconducting (SC) state near a charge instability, we performed ^{13}C NMR experiments on the molecular superconductor beta"-(BEDT-TTF)_{4}[(H_{3}O)Ga(C_{2}O_{4})_{3}]C_{6}H_{5}NO_{2}, which exhibits a charge anomaly at 100 K. The Knight shift which we measured in the SC state down to 1.5 K demonstrates that Cooper pairs are in spin-singlet state. Measurements of the nuclear spin-lattice relaxation time reveal strong electron-electron correlations in the normal state. The resistivity increase observed below 10 K indicates that the enhanced fluctuation has an electric origin. We discuss the possibility of charge-fluctuation-induced superconductivity.Comment: 5 pages, 4 figure

    Finite-Temperature Properties across the Charge Ordering Transition -- Combined Bosonization, Renormalization Group, and Numerical Methods

    Full text link
    We theoretically describe the charge ordering (CO) metal-insulator transition based on a quasi-one-dimensional extended Hubbard model, and investigate the finite temperature (TT) properties across the transition temperature, TCOT_{\rm CO}. In order to calculate TT dependence of physical quantities such as the spin susceptibility and the electrical resistivity, both above and below TCOT_{\rm CO}, a theoretical scheme is developed which combines analytical methods with numerical calculations. We take advantage of the renormalization group equations derived from the effective bosonized Hamiltonian, where Lanczos exact diagonalization data are chosen as initial parameters, while the CO order parameter at finite-TT is determined by quantum Monte Carlo simulations. The results show that the spin susceptibility does not show a steep singularity at TCOT_{\rm CO}, and it slightly increases compared to the case without CO because of the suppression of the spin velocity. In contrast, the resistivity exhibits a sudden increase at TCOT_{\rm CO}, below which a characteristic TT dependence is observed. We also compare our results with experiments on molecular conductors as well as transition metal oxides showing CO.Comment: 9 pages, 8 figure

    Pathophysiological analysis of detrusor overactivity following partial bladder outlet obstruction

    Get PDF
     Introduction: Detrusor overactivity (DO) following partial bladder outlet obstruction (PBOO) is a common urological condition in humans, with 50-70% patients with PBOO complicated with DO. The pathological mechanisms of DO following PBOO are largely unknown, but inflammatory changes may play a key role. We hypothesized that inflammation is important in the earlier pathophysiological phase before overproduction of oxidative stress in DO following PBOO. Therefore, we investigated the relationships among bladder function, ischemia, oxidative stress and inflammation in DO following PBOO in PBOO model mice. Materials and Methods: C57BL/6J male mice aged 10 to 15 weeks were used in the study. PBOO model mice were created surgically by ligation of the proximal urethra with 5-0 nylon suture under inhalation anesthesia. Sham-operated mice were used as controls. Pathophysiological changes in the bladder at 1, 3 and 5 weeks after creation of the PBOO model mice were compared with those in sham-operated mice using functional, histological, biochemical and immunohistochemical analyses. Results: Functional analysis using a pressure flow study showed increased maximum detrusor pressure at 1 week and DO from 3 to 5 weeks after creation of the PBOO model. Histological analysis using hematoxylin-eosin and Masson-Trichrome staining showed greater invasion of inflammatory cells and fibrosis in PBOO model mice compared with sham-operated mice at 3 and 5 weeks. Inflammatory cells were mainly present in interstitial tissue, and fibrosis gradually infiltrated from interstitial tissue to the muscular layer. Ischemia analysis showed significantlyincreased HIF-1α in PBOO model mice at all time points. Oxidative stress analysis indicated significantly increased levels of ROS from 1 week and 8-OHdG from 3weeks in PBOO model mice. An inflammation-related proteome assay showed high levels of colony stimulating factor (CSF) family proteins at 1 week and IL-2, IL-3, IL-17A, IL-23, MMP-3, MMP-9 and periostin from 3 to 5 weeks in PBOO model mice. Conclusions: Oxidative stress and inflammatory changes showed contemporaneous increase in pathophysiology of detrusor overactivity following partial bladder outlet obstruction. Especially, CSF family and ROS changes are showed in the early stage, and might be a predict marker in the pathophysiology of DO following PBOO at the early stage

    Preventive effect of indoleamine 2,3-dioxygenase 1 inhibition on lipopolysaccharide-induced prostatitis

    Get PDF
     Introduction and Objectives: Bacterial infections are the main cause of acute prostatitis and are treated with appropriate antimicrobial therapy. However, approximately 5% of patients continue to have inflammatory symptoms even after receiving antibacterial therapy, leading to refractory conditions. Bacterial prostatitis requires additional therapy, focusing on inflammatory changes. Indoleamine 2,3-dioxygenase 1 (IDO1) catalysis is the first rate-limiting step of tryptophan metabolism. IDO1 is expressed in the prostate and plays a key role in the immune response. As the first step in investigating the relationship between acute prostatitis and IDO1, we investigated the preventive effect of IDO1 inhibition on lipopolysaccharide (LPS)- induced prostatitis using IDO knockout (Ido1 −/−) mice in this study. Materials and Methods: The study used Ido1 −/− and wild-type (Ido1 +/+) C57BL/6J malemice aged 10–15 weeks. LPS Escherichia coli O26 (100ÎŒg/PBS, 100ÎŒL) was administered transurethrally into the lower urinary tract to create a mouse model of LPS-induced prostatitis. The prostates were removed 1, 3, 5, and 7 days after creating the model mice. Histological, immunohistochemical, and biochemical analyses were used to compare the preventive effect in Ido1 −/− mice compared with that in Ido1+/+ mice. Results: HE staining showed suppression of ductal destruction following infiltration of inflammatory cells in Ido1 −/− mice compared with Ido1 +/+ mice. The enzyme-linked immunosorbent assay (ELISA) method was used for kynurenine pathway analysis, which showed significantly maintained tryptophan levels and decreased L-kynurenine levels in Ido1 −/− mice compared to Ido1 +/+ mice. The IDO1 assay in Ido1 +/+ mice showed significantly increased levels during all observation periods after creating the model compared with that under normal conditions. Immunofluorescent staining using five types of cytokines and chemokines (IL-2, IL-4, IL-17, CCL2, and CCL3) related to the pathophysiology of acute prostatitis showed decreased expression of these cytokines and chemokines in Ido1 -/- mice compared with Ido1 +/+ mice. Inflammation-related proteome assays showed decreased levels of IL-1ÎČ, IL-4, IL-5, IL-6, IL-17, CCL2, CCL3, CXCL1, CXCL11, and tissue inhibitor of matrix metalloproteinases (TIMP)-1 in Ido1 −/− mice compared with Ido1 −/− mice during all observation periods after model creation. Conclusions: IDO1 is involved in LPS-induced prostatitis through cytokines and chemokines. IDO1 inhibition contributes to the prevention of LPS-induced prostatitis. IDO1 inhibition has the potential to serve as an additional therapy for acute prostatitis

    MICALs in control of the cytoskeleton, exocytosis, and cell death

    Get PDF
    MICALs form an evolutionary conserved family of multidomain signal transduction proteins characterized by a flavoprotein monooxygenase domain. MICALs are being implicated in the regulation of an increasing number of molecular and cellular processes including cytoskeletal dynamics and intracellular trafficking. Intriguingly, some of these effects are dependent on the MICAL monooxygenase enzyme and redox signaling, while other functions rely on other parts of the MICAL protein. Recent breakthroughs in our understanding of MICAL signaling identify the ability of MICALs to bind and directly modify the actin cytoskeleton, link MICALs to the docking and fusion of exocytotic vesicles, and uncover MICALs as anti-apoptotic proteins. These discoveries could lead to therapeutic advances in neural regeneration, cancer, and other diseases

    Nutritional psychiatry research: an emerging discipline and its intersection with global urbanization, environmental challenges and the evolutionary mismatch

    Full text link

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS
    • 

    corecore