3,021 research outputs found

    Analysis of previous microscopic calculations for second 0+0^+ state in 12^{12}C in terms of 3-alpha particle Bose-condensed state

    Full text link
    The wave function of the second 0+0^+ state of 12^{12}C which was obtained long time ago by solving the microscopic 3α\alpha problem is shown to be almost completely equivalent to the wave function of the 3α\alpha condensed state which has been proposed recently by the present authors. This equivalence of the wave functions is shown to hold in two cases where different effective two-nucleon forces are adopted. This finding gives strong support for interpreting the second 0+0^+ state of 12^{12}C which is the key state for the synthesis of 12^{12}C in stars ('Hoyle' state), and which is one of the typical mysterious 0+0^+ states in light nuclei, as a gas-like structure of three α\alpha particles, Bose-condensed into an identical s-wave function.Comment: revtex, 5 pages, 2 figures, submitted to Phys. Rev.

    Alpha cluster condensation in 12C and 16O

    Get PDF
    A new α\alpha-cluster wave function is proposed which is of the α\alpha-particle condensate type. Applications to 12^{12}C and 16^{16}O show that states of low density close to the 3 resp. 4 α\alpha-particle threshold in both nuclei are possibly of this kind. It is conjectured that all self-conjugate 4nn nuclei may show similar features.Comment: 4 pages, 2 tables, 2 figure

    Trapping of Neutral Rubidium with a Macroscopic Three-Phase Electric Trap

    Full text link
    We trap neutral ground-state rubidium atoms in a macroscopic trap based on purely electric fields. For this, three electrostatic field configurations are alternated in a periodic manner. The rubidium is precooled in a magneto-optical trap, transferred into a magnetic trap and then translated into the electric trap. The electric trap consists of six rod-shaped electrodes in cubic arrangement, giving ample optical access. Up to 10^5 atoms have been trapped with an initial temperature of around 20 microkelvin in the three-phase electric trap. The observations are in good agreement with detailed numerical simulations.Comment: 4 pages, 4 figure

    Restoration of Isospin Symmetry in Highly Excited Nuclei

    Get PDF
    Explicit relations between the isospin mixing probability, the spreading width ΓIAS↓\Gamma_{IAS}^{\downarrow} of the Isobaric Analog State (IAS) and the statistical decay width Γc\Gamma_c of the compound nucleus at finite excitation energy, are derived by using the Feshbach projection formalism. The temperature dependence of the isospin mixing probability is discussed quantitatively for the first time by using the values of ΓIAS↓\Gamma_{IAS}^{\downarrow} and of Γc\Gamma_c calculated by means of microscopic models. It is shown that the mixing probability remains essentially constant up to a temperature of the order of 1 MeV and then decreases to about 1/4 of its zero temperature value, at higher temperature than ≈\approx 3 MeV, due to the short decay time of the compound system.Comment: 13 pages, 1 figure (PostScript file included). To appear in Phys. Lett.

    Accuracy of B(E2; 0+ -> 2+) transition rates from intermediate-energy Coulomb excitation experiments

    Full text link
    The method of intermediate-energy Coulomb excitation has been widely used to determine absolute B(E2; 0+ -> 2+) quadrupole excitation strengths in exotic nuclei with even numbers of protons and neutrons. Transition rates measured with intermediate-energy Coulomb excitation are compared to their respective adopted values and for the example of 26Mg to the B(E2; 0+ -> 2+) values obtained with a variety of standard methods. Intermediate-energy Coulomb excitation is found to have an accuracy comparable to those of long-established experimental techniques.Comment: to be published in Phys. Rev.
    • 

    corecore