5,297 research outputs found

    Numerical modeling of dynamic powder compaction using the Kawakita equation of state

    Get PDF
    Dynamic powder compaction is analyzed using the assumption that the powder behaves, while it is being compacted, like a hydrodynamic fluid in which deviatoric stress and heat conduction effects can be ignored throughout the process. This enables techniques of computational fluid dynamics such the equilibrium flux method to be used as a modeling tool. The equation of state of the powder under compression is assumed to be a modified version of the Kawakita loading curve. Computer simulations using this model are performed for conditions matching as closely as possible with those from experiments by Page and Killen [Powder Metall. 30, 233 (1987)]. The numerical and experimental results are compared and a surprising degree of qualitative agreement is observed

    Optical Hall Effect in the Integer Quantum Hall Regime

    Full text link
    Optical Hall conductivity σxy(ω)\sigma_{xy}(\omega) is measured from the Faraday rotation for a GaAs/AlGaAs heterojunction quantum Hall system in the terahertz frequency regime. The Faraday rotation angle (∼\sim fine structure constant ∼\sim mrad) is found to significantly deviate from the Drude-like behavior to exhibit a plateau-like structure around the Landau-level filling ν=2\nu=2. The result, which fits with the behavior expected from the carrier localization effect in the ac regime, indicates that the plateau structure, although not quantized, still exists in the terahertz regime.Comment: 4 pages, 4 figure

    Tuning the electrically evaluated electron Lande g factor in GaAs quantum dots and quantum wells of different well widths

    Full text link
    We evaluate the Lande g factor of electrons in quantum dots (QDs) fabricated from GaAs quantum well (QW) structures of different well width. We first determine the Lande electron g factor of the QWs through resistive detection of electron spin resonance and compare it to the enhanced electron g factor determined from analysis of the magneto-transport. Next, we form laterally defined quantum dots using these quantum wells and extract the electron g factor from analysis of the cotunneling and Kondo effect within the quantum dots. We conclude that the Lande electron g factor of the quantum dot is primarily governed by the electron g factor of the quantum well suggesting that well width is an ideal design parameter for g-factor engineering QDs

    Terahertz Magneto Optical Polarization Modulation Spectroscopy

    Full text link
    We report the development of new terahertz techniques for rapidly measuring the complex Faraday angle in systems with broken time-reversal symmetry using the cyclotron resonance of a GaAs two-dimensional electron gas in a magnetic field as a system for demonstration of performance. We have made polarization modulation, high sensitivity (< 1 mrad) narrow band rotation measurements with a CW optically pumped molecular gas laser, and by combining the distinct advantages of terahertz (THz) time domain spectroscopy and polarization modulation techniques, we have demonstrated rapid broadband rotation measurements to < 5 mrad precision.Comment: 25 pages including 7 figures, introduces use of rotating polarizer with THz TDS for Complex Faraday Angle determinatio

    Lens space surgeries on A'Campo's divide knots

    Full text link
    It is proved that every knot in the major subfamilies of J. Berge's lens space surgery (i.e., knots yielding a lens space by Dehn surgery) is presented by an L-shaped (real) plane curve as a "divide knot" defined by N. A'Campo in the context of singularity theory of complex curves. For each knot given by Berge's parameters, the corresponding plane curve is constructed. The surgery coefficients are also considered. Such presentations support us to study each knot itself, and the relationship among the knots in the set of lens space surgeries.Comment: 26 pages, 19 figures. The proofs of Theorem 1.3 and Lemma 3.5 are written down by braid calculus. Section 4 (on the operation Adding squares) is revised and improved the most. Section 5 is adde
    • …
    corecore