2,423 research outputs found

    Quantum decoherence in the theory of open systems

    Full text link
    In the framework of the Lindblad theory for open quantum systems, we determine the degree of quantum decoherence of a harmonic oscillator interacting with a thermal bath. It is found that the system manifests a quantum decoherence which is more and more significant in time. We calculate also the decoherence time scale and analyze the transition from quantum to classical behaviour of the considered system.Comment: 6 pages; talk at the 3rd International Workshop "Quantum Physics and Communication" (QPC 2005), Dubna, Russia, 200

    Quantum decoherence of the damped harmonic oscillator

    Get PDF
    In the framework of the Lindblad theory for open quantum systems, we determine the degree of quantum decoherence of a harmonic oscillator interacting with a thermal bath. It is found that the system manifests a quantum decoherence which is more and more significant in time. We also calculate the decoherence time and show that it has the same scale as the time after which thermal fluctuations become comparable with quantum fluctuations.Comment: Talk at the XI International Conference on Quantum Optics (ICQO'2006), May 2006, Minsk (Belarus), 9 page

    The asymptotic quasi-stationary states of the two-dimensional magnetically confined plasma and of the planetary atmosphere

    Full text link
    We derive the differential equation governing the asymptotic quasi-stationary states of the two dimensional plasma immersed in a strong confining magnetic field and of the planetary atmosphere. These two systems are related by the property that there is an intrinsic constant length: the Larmor radius and respectively the Rossby radius and a condensate of the vorticity field in the unperturbed state related to the cyclotronic gyration and respectively to the Coriolis frequency. Although the closest physical model is the Charney-Hasegawa-Mima (CHM) equation, our model is more general and is related to the system consisting of a discrete set of point-like vortices interacting in plane by a short range potential. A field-theoretical formalism is developed for describing the continuous version of this system. The action functional can be written in the Bogomolnyi form (emphasizing the role of Self-Duality of the asymptotic states) but the minimum energy is no more topological and the asymptotic structures appear to be non-stationary, which is a major difference with respect to traditional topological vortex solutions. Versions of this field theory are discussed and we find arguments in favor of a particular form of the equation. We comment upon the significant difference between the CHM fluid/plasma and the Euler fluid and respectively the Abelian-Higgs vortex models.Comment: Latex 126 pages, 7 eps figures included. Discussion on various forms of the equatio

    Burst-Timing-Dependent Plasticity of NMDA Receptor-Mediated Transmission in Midbrain Dopamine Neurons

    Get PDF
    SummaryBursts of spikes triggered by sensory stimuli in midbrain dopamine neurons evoke phasic release of dopamine in target brain areas, driving reward-based reinforcement learning and goal-directed behavior. NMDA-type glutamate receptors (NMDARs) play a critical role in the generation of these bursts. Here we report LTP of NMDAR-mediated excitatory transmission onto dopamine neurons in the substantia nigra. Induction of LTP requires burst-evoked Ca2+ signals amplified by preceding metabotropic neurotransmitter inputs in addition to the activation of NMDARs themselves. PKA activity gates LTP induction by regulating the magnitude of Ca2+ signal amplification. This form of plasticity is associative, input specific, reversible, and depends on the relative timing of synaptic input and postsynaptic bursting in a manner analogous to the timing rule for cue-reward learning paradigms in behaving animals. NMDAR plasticity might thus represent a potential neural substrate for conditioned dopamine neuron burst responses to environmental stimuli acquired during reward-based learning

    Galactic periodicity and the oscillating G model

    Get PDF
    We consider the model involving the oscillation of the effective gravitational constant that has been put forward in an attempt to reconcile the observed periodicity in the galaxy number distribution with the standard cosmological models. This model involves a highly nonlinear dynamics which we analyze numerically. We carry out a detailed study of the bound that nucleosynthesis imposes on this model. The analysis shows that for any assumed value for Ω\Omega (the total energy density) one can fix the value of Ωbar\Omega_{\rm bar} (the baryonic energy density) in such a way as to accommodate the observational constraints coming from the 4He^4{\rm He} primordial abundance. In particular, if we impose the inflationary value Ω=1\Omega=1 the resulting baryonic energy density turns out to be Ωbar0.021\Omega_{\rm bar}\sim 0.021. This result lies in the very narrow range 0.016Ωbar0.0260.016 \leq \Omega_{\rm bar} \leq 0.026 allowed by the observed values of the primordial abundances of the other light elements. The remaining fraction of Ω\Omega corresponds to dark matter represented by a scalar field.Comment: Latex file 29 pages with no figures. Please contact M.Salgado for figures. A more careful study of the model appears in gr-qc/960603

    Classical Fields Near Thermal Equilibrium

    Get PDF
    We discuss the classical limit for the long-distance (``soft'') modes of a quantum field when the hard modes of the field are in thermal equilibrium. We address the question of the correct semiclassical dynamics when a momentum cut-off is introduced. Higher order contributions leads to a stochastic interpretation for the effective action in analogy to Quantum Brownian Motion, resulting in dissipation and decoherence for the evolution of the soft modes. Particular emphasis is put on the understanding of dissipation. Our discussion focuses mostly on scalar fields, but we make some remarks on the extension to gauge theories.Comment: REVTeX, 6 figure

    Universe Reheating after Inflation

    Full text link
    We study the problem of scalar particle production after inflation by a rapidly oscillating inflaton field. We use the framework of the chaotic inflation scenario with quartic and quadratic inflaton potentials. Particular attention is paid to parametric resonance phenomena which take place in the presence of the quickly oscillating inflaton field. We have found that in the region of applicability of perturbation theory the effects of parametric resonance are crucial, and estimates based on first order Born approximation often underestimate the particle production. In the case of the quartic inflaton potential V(φ)=λφ4V(\varphi) = \lambda \varphi^4, the particle production process is very efficient even for small values of coupling constants. The reheating temperature of the universe in this case is [λlog(1/λ)]1\left[\lambda\, \log\, (1/\lambda) \right]^{- 1} times larger than the corresponding estimates based on first order Born approximation. In the case of the quadratic inflaton potential the reheating process depends crucially on the type of coupling between the inflaton and the other scalar field and on the magnitudes of the coupling constants. If the inflaton coupling to fermions and its linear (in inflaton field) coupling to scalar fields are suppressed, then, as previously discussed by Kofman, Linde and Starobinsky (see e.g. Ref. 13), the inflaton field will eventually decouple from the rest of the matter, and the residual inflaton oscillations may provide the (cold) dark matter of the universe. In the case of the quadratic inflaton potential we obtain the lowest and the highest possible bounds on the effective energy density of the inflaton field when it freezes out.Comment: 40 pages, Preprint BROWN-HET-957 (revised version, some mistakes corrected), uses phyzz
    corecore