3,503 research outputs found

    Temperature-Dependent Thermoelastic Anisotropy of the Phenyl Pyrimidine Liquid Crystal

    Get PDF

    Liquid phase epitaxy of GaAlAs on GaAs substrates with fine surface corrugations

    Get PDF
    Liquid phase epitaxy of GaAlAs was performed on GaAs fine surface corrugations. By optimizing the growth conditions, GaAlAs layers were grown successfully with only minimal meltback

    Cosmological Constraints on a Dynamical Electron Mass

    Full text link
    Motivated by recent astrophysical observations of quasar absorption systems, we formulate a simple theory where the electron to proton mass ratio μ=me/mp\mu =m_{e}/m_{p} is allowed to vary in space-time. In such a minimal theory only the electron mass varies, with α\alpha and mpm_{p} kept constant. We find that changes in μ\mu will be driven by the electronic energy density after the electron mass threshold is crossed. Particle production in this scenario is negligible. The cosmological constraints imposed by recent astronomical observations are very weak, due to the low mass density in electrons. Unlike in similar theories for spacetime variation of the fine structure constant, the observational constraints on variations in μ\mu imposed by the weak equivalence principle are much more stringent constraints than those from quasar spectra. Any time-variation in the electron-proton mass ratio must be less than one part in 10910^{9}since redshifts z≈1.z\approx 1.This is more than one thousand times smaller than current spectroscopic sensitivities can achieve. Astronomically observable variations in the electron-proton must therefore arise directly from effects induced by varying fine structure 'constant' or by processes associated with internal proton structure. We also place a new upper bound of 2×10−82\times 10^{-8} on any large-scale spatial variation of μ\mu that is compatible with the isotropy of the microwave background radiation.Comment: New bounds from weak equivalence principle experiments added, conclusions modifie

    Numerical investigation of friction in inflaton equations of motion

    Full text link
    The equation of motion for the expectation value of a scalar quantum field does not have the local form that is commonly assumed in studies of inflationary cosmology. We have recently argued that the true, temporally non-local equation of motion does not possess a time-derivative expansion and that the conversion of inflaton energy into particles is not, in principle, described by the friction term estimated from linear response theory. Here, we use numerical methods to investigate whether this obstacle to deriving a local equation of motion is purely formal, or of some quantitative importance. Using a simple scalar-field model, we find that, although the non-equilibrium evolution can exhibit significant damping, this damping is not well described by the local equation of motion obtained from linear response theory. It is possible that linear response theory does not apply to the situation we study only because thermalization turns out to be slow, but we argue that that the large discrepancies we observe indicate a failure of the local approximation at a more fundamental level.Comment: 13 pages, 7 figure

    The asymptotic quasi-stationary states of the two-dimensional magnetically confined plasma and of the planetary atmosphere

    Full text link
    We derive the differential equation governing the asymptotic quasi-stationary states of the two dimensional plasma immersed in a strong confining magnetic field and of the planetary atmosphere. These two systems are related by the property that there is an intrinsic constant length: the Larmor radius and respectively the Rossby radius and a condensate of the vorticity field in the unperturbed state related to the cyclotronic gyration and respectively to the Coriolis frequency. Although the closest physical model is the Charney-Hasegawa-Mima (CHM) equation, our model is more general and is related to the system consisting of a discrete set of point-like vortices interacting in plane by a short range potential. A field-theoretical formalism is developed for describing the continuous version of this system. The action functional can be written in the Bogomolnyi form (emphasizing the role of Self-Duality of the asymptotic states) but the minimum energy is no more topological and the asymptotic structures appear to be non-stationary, which is a major difference with respect to traditional topological vortex solutions. Versions of this field theory are discussed and we find arguments in favor of a particular form of the equation. We comment upon the significant difference between the CHM fluid/plasma and the Euler fluid and respectively the Abelian-Higgs vortex models.Comment: Latex 126 pages, 7 eps figures included. Discussion on various forms of the equatio

    Implementation of Drug and Alcohol Testing in the Unionized Workplace

    Get PDF
    Society has long been troubled by illegal drug and alcohol abuse

    Scaling Relations for Collision-less Dark Matter Turbulence

    Full text link
    Many scaling relations are observed for self-gravitating systems in the universe. We explore the consistent understanding of them from a simple principle based on the proposal that the collision-less dark matter fluid terns into a turbulent state, i.e. dark turbulence, after crossing the caustic surface in the non-linear stage. The dark turbulence will not eddy dominant reflecting the collision-less property. After deriving Kolmogorov scaling laws from Navier-Stokes equation by the method similar to the one for Smoluchowski coagulation equation, we apply this to several observations such as the scale-dependent velocity dispersion, mass-luminosity ratio, magnetic fields, and mass-angular momentum relation, power spectrum of density fluctuations. They all point the concordant value for the constant energy flow per mass: 0.3cm2/sec30.3 cm^2/sec^3, which may be understood as the speed of the hierarchical coalescence process in the cosmic structure formation.Comment: 26 pages, 6 figure

    Thiol density dependent classical potential for methyl-thiol on a Au(111) surface

    Full text link
    A new classical potential for methyl-thiol on a Au(111) surface has been developed using density functional theory electronic structure calculations. Energy surfaces between methyl-thiol and a gold surface were investigated in terms of symmetry sites and thiol density. Geometrical optimization was employed over all the configurations while minimum energy and thiol height were determined. Finally, a new interatomic potential has been generated as a function of thiol density, and applications to coarse-grained simulations are presented
    • …
    corecore