240 research outputs found

    Recycling of Thermoset Materials and Thermoset-Based Composites: Challenge and Opportunity

    Get PDF
    Thermoset materials and their composites are characterized by a long life cycle with their main applications in aircrafts, wind turbines and constructions as insulating materials. Considering the importance of recovery and valorization of these materials at their end-of-life, avoiding landfilling, the interest concerning their recycling grows continuously. The thermoset materials and their composites, to be successfully recovered and valorized, must degrade their three-dimensional structures and recover the mono-oligomers and/or fillers. The thermoset materials could successfully degrade through thermal treatment at different temperatures (for example, above 1000 degrees C for incineration, ca. 500 degrees C for oxidation/combustion of organic constituents, etc.), chemical degradation by catalyst, irradiation with or without the presence of water, alcohol, etc., and mechanical recycling, obtaining fine particles that are useful as filler and/or reinforcement additives. Among these recycling methods, this mini-review focuses on the formulation and recovery method of innovative thermoset with in-build recyclability, i.e., materials having chemical links that could be degraded on-demand or containing dynamic covalent bonds to have re-processable and/or recyclable thermoset. This issue could be considered the future perspective in developing novel thermoset materials. The aim of this review is to get an overview of the state of the art in thermoset recycling and of the most commonly used thermoset composites, recovering valuable reinforcing fibers. Additionally, in this work, we also report not only known recycling routes for thermoset and thermoset-based composites, but also new and novel formulating strategies for producing thermosets with built-in recyclability, i.e., containing chemical-triggered on-demand links. This mini-review is also a valuable guide for educational purposes for students and specialized technicians in polymer production and recycling

    Polar Wax as Adhesion Promoter in Polymeric Blend Films for Durable Photovoltaic Encapsulants

    Get PDF
    Technological developments in the solar photovoltaic field must guarantee the high performance and low deterioration of solar cells in order for solar power plants to be more efficient and competitive. The solar cell needs comprehensive protection offered by a polymeric encapsulant, which improves UV stability, reduces water and moisture absorption, reduces oxygen and vapor permeability and enhances mechanical resistance. Moreover, high transparency and adhesion yields improved the solar panel performance. The current work analyzes polymeric films based on poly(ethylene-co-vinyl acetate) (EVA) and polyolefin (PO) for photovoltaic encapsulant use (the high temperature resistance is improved by adding PO to EVA, as investigated and documented before). To enhance the mechanical resistance and optical properties of the investigated matrices, a crosslinking agent, an adhesion promoter and stabilizing agents have been incorporated in both EVA and EVA/PO systems. The adhesion promoter is a polar wax–silane-free agent; the absence of the silane function allows the integrity of the module to be maintained over time. All samples were characterized through mechanical and rheological analysis, and their long-term UV stability was investigated by accelerated ageing and by FTIR and UV–vis spectroscopy. The obtained results suggest that the presence of a crosslinking agent, an adhesion promoter and stabilizers in EVA/PO-based films allows for the achievement of the required features for the encapsulants, showing mechanical and rheological behavior similar to those of EVA containing the same additives

    Structure-properties relationships of polyhedral oligomeric silsesquioxane (POSS) filled PS nanocomposites

    Get PDF
    The polyhedral oligomeric silsesquioxane (POSS) additivated polystyrene (PS) based nanocomposites were prepared by melt processing and the structure-properties relationships of the POSS-PS systems were compared to those of the neat PS. In order to investigate the effect of these structural parameters on the final properties of the polymer nanocomposites, five different kinds of POSS samples were used, in particular, POSS with different inorganic cage and with different organic pendent groups. The rheological investigation suggests clearly that the POSS acts as a plasticizer and that the processability of the PS was positively modified. The affinity between the POSS samples and the PS matrix was estimated by the calculated theoretical solubility parameters, considering the Hoy’s method and by morphology analysis. Minor difference between the solubility parameter of POSS and the matrix means better compatibility and no aggregation tendency. Furthermore, the POSS loading leads to a decrease of the rigidity, of the glass transition temperature and of the damping factor of the nanocomposite systems. The loading of different POSS molecules with open cage leads to a more pronounced effect on all the investigated properties that the loading of the POSS molecules with closed cage. Moreover, the melt properties are significantly influenced by the type of inorganic framework, by the type of the pendent organic groups and by the interaction between the POSS organic groups and the host matrix, while, the solid state properties appears to be influenced more by the kind of cage

    Biochar Particles Obtained from Agricultural Carob Waste as a Suitable Filler for Sustainable Biocomposite Formulations

    Get PDF
    In the context of sustainable and circular economy, the recovery of biowaste for sustainable biocomposites formulation is a challenging issue. The aim of this work is to give a new life to agricultural carob waste after glucose extraction carried out by a local factory for carob candy production. A pyrolysis process was carried out on bio-waste to produce biofuel and, later, the solid residual fraction of pyrolysis process was used as interesting filler for biocomposites production. In this work, biochar particles (BC) as a pyrolysis product, after fuels recovery of organic biowaste, specifically, pyrolyzed carobs after glucose extraction, were added on poly(butylene-adipate-co-terephthalate), (PBAT), at two different concentrations, i.e., 10 and 20 wt%. The BC have been produced using three pyrolysis processing temperatures (i.e., 280, 340 and 400 degrees C) to optimize the compositions of produced solid fractions and biofuels. The resulting particles from the pyrolysis process (BC280, BC340 and BC400) were considered as suitable fillers for PBAT. Firstly, the BC particles properties were characterized by elemental composition and spectroscopy analysis, particle size measurements and evaluation of radical scavenging activity and efficiency. Moreover, PBAT/BC composites were subjected to analysis of their rheological and thermal behavior, morphologies and mechanical properties. In addition, accelerated weathering, monitored by both tensile test and spectroscopic analysis, was carried out, and obtained results show that the biochar particles can exert a beneficial effect on photo-oxidation delay of PBAT matrix

    Anemia and acute coronary syndrome: current perspectives

    Get PDF
    Reference hemoglobin (Hb) values for the definition of anemia are still largely based on the 1968 WHO Scientific Group report, which established a cutoff value of <13 g/dL for adult men and <12 g/dL for adult nonpregnant women. Subsequent studies identified different normal values according to race and age. Estimated prevalence of anemia on admission in the setting of an acute coronary syndrome (ACS) is between 10% and 43% of the patients depending upon the specific population under investigation. Furthermore, up to 57% of ACS patients may develop hospital-acquired anemia (HAA). Both anemia on admission and HAA are associated with worse short- and long-term mortality, even if different mechanisms contribute to their prognostic impact. Baseline anemia can usually be traced back to preexisting disease that should be specifically investigated and corrected whenever possible. HAA is associated with clinical characteristics, medical therapy and interventional procedures, all eliciting cardiovascular adaptive response that can potentially worsen myocardial ischemia. The intrinsic fragility of anemic patients may limit aggressive medical and interventional therapy due to an increased risk of bleeding, and could independently contribute to worse outcome. However, primary angioplasty for ST elevation ACS should not be delayed because of preexisting (and often not diagnosed) anemia; delaying revascularization to allow fast-track anemia diagnosis is usually feasible and justified in non-ST-elevation ACS. Besides identification and treatment of the underlying causes of anemia, the only readily available means to reverse anemia is red blood cell transfusion. The adequate transfusion threshold is still being debated, although solid evidence suggests reserving red blood cell transfusions for patients with Hb level <8 g/dL and considering it in selected cases with Hb levels of between 8 and 10 g/dL. No evidence supports the use of iron supplements and erythropoiesis-stimulating agents in the setting of ACS

    Flexible Perfluoropolyethers-Functionalized CNTs-Based UHMWPE Composites: A Study on Hydrogen Evolution, Conductivity and Thermal Stability

    Get PDF
    Flexible conductive composites based on ultra-high molecular weight polyethylene (UHMWPE) filled with multi-walled carbon nanotubes (CNTs) modified by perfluoropolyethers (PFPEs) were produced. The bonding of PFPE chains, added in 1:1 and 2:1 weight ratios, on CNTs influences the dispersion of nanotubes in the UHMWPE matrix due to the non-polar nature of the polymer, facilitating the formation of nanofillers-rich conductive pathways and improving composites’ electrical conductivity (two to five orders of magnitude more) in comparison to UHMWPE-based nanocomposites obtained with pristine CNTs. Electrochemical atomic force microscopy (EC-AFM) was used to evaluate the morphological changes during cyclic voltammetry (CV). The decrease of the overpotential for hydrogen oxidation peaks in samples containing PFPE-functionalized CNTs and hydrogen production (approximately −1.0 V vs. SHE) suggests that these samples could find application in fuel cell technology as well as in hydrogen storage devices. Carbon black-containing composites were prepared for comparative study with CNTs containing nanocomposites

    Time from adenosine di-phosphate receptor antagonist discontinuation to coronary bypass surgery in patients with acute coronary syndrome: meta-analysis and meta-regression

    Get PDF
    BACKGROUND: Adenosine di-phosphate receptor antagonists (ADPRAs) blunt hemostasis for several days after administration. This effect, aimed at preventing cardiac ischemic complications particularly in patients with acute coronary syndromes (ACS), may increase perioperative bleeding in the case of cardiac surgery. Practice Guidelines recommend withholding ADPRAs for at least 5days prior to surgery, though with a weak base of evidence. The purpose of this study was to systematically review observational and experimental studies of early or late preoperative discontinuation of ADPRAs prior to coronary artery bypass grafting (CABG) for patients with ACS. METHODS: MEDLINE, EMBASE, the Cochrane Library databases up to December 2011; and reference lists. Observational and experimental studies that compared early ADPRA discontinuation with late discontinuation, or no discontinuation, in patients with ACS undergoing CABG. RESULTS: There were 19 studies, including 14,046 participants, 395 deaths and 309 reoperations due to bleeding. ADPRA late discontinuation up to CABG was associated with an increased risk of postoperative mortality (OR 1.46, 95% confidence interval (CI) 1.10 to 1.93) and reoperations due to bleeding (OR 2.18; 95% CI 1.47 to 2.62). Between-study heterogeneity was low. Meta-analysis limited to high quality or prospective studies gave consistent results. In most instances, the 95% prediction intervals for summary risk estimates confirmed the risk across study groups. CONCLUSIONS: ADPRA late discontinuation prior to CABG is associated with an increased risk of death and reoperations due to bleeding in patients with ACS. The confidence in the estimates of risk for late discontinuation is moderate to high

    Effects of exercise training on airway responsiveness and airway cells in healthy subjects

    Get PDF
    J Appl Physiol. 2010 Aug;109(2):288-94. Epub 2010 Jun 10. Effects of exercise training on airway responsiveness and airway cells in healthy subjects. Scichilone N, Morici G, Zangla D, Chimenti L, Dav\uec E, Reitano S, Patern\uf2 A, Santagata R, Togias A, Bellia V, Bonsignore MR. SourceDept. of Internal Medicine, Div. of Pulmonology (DIBIMIS Univ. of Palermo, "Villa Sofia-Cervello" Hospital, Via Trabucco 180, 90146 Palermo, Italy. [email protected] Abstract Airway responsiveness to methacholine (Mch) in the absence of deep inspirations (DIs) is lower in athletes compared with sedentary individuals. In this prospective study, we tested the hypothesis that a training exercise program reduces the bronchoconstrictive effect of Mch. Ten healthy sedentary subjects (M/F: 3/7; mean + or - SD age: 22 + or - 3 yr) entered a 10-wk indoor rowing exercise program on rowing ergometer and underwent Mch bronchoprovocation in the absence of DIs at baseline, at weeks 5 and 10, as well as 4-6 wk after the training program was completed. Exercise-induced changes on airway cells and markers of airway inflammation were also assessed by sputum induction and venous blood samples. Mean power output during the 1,000 m test was 169 + or - 49 W/stroke at baseline, 174 + or - 49 W/stroke at 5 wk, and 200 + or - 60 W/stroke at 10 wk of training (P < 0.05). The median Mch dose used at baseline was 50 mg/ml (range 25-75 mg/ml) and remained constant per study design. At the pretraining evaluation, the percent reduction in the primary outcome, the inspiratory vital capacity (IVC) after inhalation of Mch in the absence of DIs was 31 +/- 13%; at week 5, the Mch-induced reduction in IVC was 22 + or - 19%, P = 0.01, and it further decreased to 15 + or - 11% at week 10 (P = 0.0008). The percent fall in IVC 4-6 wk after the end of training was 15 + or - 11% (P = 0.87 vs. end of training). Changes in airway cells were not associated with changes in airway responsiveness. Our data show that a course of exercise training can attenuate airway responsiveness against Mch inhaled in the absence of DIs in healthy subjects and suggest that a sedentary lifestyle may favor development of airways hyperresponsiveness. Comment in J Appl Physiol. 2010 Aug;109(2):267-8. PMID:20538849[PubMed - in process
    • …
    corecore