21 research outputs found

    The phase diagram of the underdoped cuprates at high magnetic field

    Full text link
    The experimentally measured phase diagram of cuprate superconductors in the temperature-applied magnetic field plane illuminates key issues in understanding the physics of these materials. At low temperature, the superconducting state gives way to a long-range charge order with increasing magnetic field; both the orders coexist in a small intermediate region. The charge order transition is strikingly insensitive to temperature, and quickly reaches a transition temperature close to the zero-field superconducting TcT_c. We argue that such a transition along with the presence of the coexisting phase cannot be described simply by a competing orders formalism. We demonstrate that for some range of parameters there is an enlarged symmetry of the strongly coupled charge and superconducting orders in the system depending on their relative masses and the coupling strength of the two orders. We establish that this sharp switch from the superconducting phase to the charge order phase can be understood in the framework of a composite SU(2) order parameter comprising the charge and superconducting orders. Finally, we illustrate that there is a possibility of the coexisting phase of the competing charge and superconducting orders only when the SU(2) symmetry between them is weakly broken due to biquadratic terms in the free energy. The relation of this sharp transition to the proximity to the pseudogap quantum critical doping is also discussed

    Collective mode in the SU(2) theory of cuprates

    Full text link
    Recent advances in momentum-resolved electron energy-loss spectroscopy (MEELS) and resonant inelastic X-ray scattering (RIXS) now allow one to access the charge response function with unprecedented versatility and accuracy. This allows for the study of excitations which were inaccessible recently, such as low-energy and finite momentum collective modes. The SU(2) theory of the cuprates is based on a composite order parameter with SU(2) symmetry fluctuating between superconductivity and charge order. The phase where it fluctuates is a candidate for the pseudogap phase of the cuprates. This theory has a signature, enabling its strict experimental test, which is the fluctuation between these two orders, corresponding to a charge 2 spin 0 mode at the charge ordering wave-vector. Here we derive the influence of this SU(2) collective mode on the charge susceptibility in both strong and weak coupling limits, and discuss its relation to MEELS, RIXS and Raman experiments. We find two peaks in the charge susceptibility at finite energy, whose middle is the charge ordering wave-vector, and discuss their evolution in the phase diagram

    Optical conductivity and resistivity in a four-band model for ZrTe5_5 from ab-initio calculations

    Get PDF
    ZrTe5_5 is considered a potential candidate for either a Dirac semimetal or a topological insulator in close proximity to a topological phase transition. Recent optical conductivity results motivated a two-band model with a conical dispersion in 2D, in contrast to density functional theory calculations. Here, we reconcile the two by deriving a four-band model for ZrTe5_5 using kp\textbf{k} \cdot \textbf{p} theory, and fitting its parameters to the ab-initio band structure. The optical conductivity with an adjusted electronic structure matches the key features of experimental data. The chemical potential varies strongly with temperature, to the point that it may cross the gap entirely between zero and room temperature. The temperature-dependent resistivity displays a broad peak, and confirms theoretically the conclusions of recent experiments attributing the origin of the resistivity peak to the large shift of the chemical potential with temperature

    Synthetic gravitational horizons in low-dimensional quantum matter

    Get PDF
    We propose a class of lattice models realizable in a wide range of setups whose low-energy dynamics exactly reduces to Dirac fields subjected to (1+1)-dimensional gravitational backgrounds, including (anti-)de Sitter spacetime. Wave-packets propagating on the lattice exhibit an eternal slowdown for power-law position-dependent hopping integrals t(x)xγt(x)\propto x^\gamma when γ1\gamma\geq 1, signalling the formation of black hole event horizons. For γ<1\gamma< 1 instead the wave-packets behave radically different and bounce off the horizon. We show that the eternal slowdown relates to a zero-energy spectral singularity of the lattice model and that the semiclassical wave packets trajectories coincide with the geodesics on (1+1)D dilaton gravity, paving the way for new and experimentally feasible routes to mimic black hole horizons and realize (1+1)D spacetimes as they appear in certain gravity theories.Comment: 6 pages, 5 figure

    Quantum dynamics in 1D lattice models with synthetic horizons

    Get PDF
    We investigate the wave packet dynamics and eigenstate localization in recently proposed generalized lattice models whose low-energy dynamics mimics a quantum field theory in (1+1)D curved spacetime with the aim of creating systems analogous to black holes. We identify a critical slowdown of zero-energy wave packets in a family of 1D tight-binding models with power-law variation of the hopping parameter, indicating the presence of a horizon. Remarkably, wave packets with non-zero energies bounce back and reverse direction before reaching the horizon. We additionally observe a power-law localization of all eigenstates, each bordering a region of exponential suppression. These forbidden regions dictate the closest possible approach to the horizon of states with any given energy. These numerical findings are supported by a semiclassical description of the wave packet trajectories, which are shown to coincide with the geodesics expected for the effective metric emerging from the considered lattice models in the continuum limit.Comment: 13 pages, 8 figure

    Effects of stoichiometric doping in superconducting Bi-O-S compounds.

    Get PDF
    Newly discovered Bi-O-S compounds remain an enigma in attempts to understand their electronic properties. A recent study of Bi4O4S3 has shown it to be a mixture of two phases, Bi2OS2 and Bi3O2S3, the latter being superconducting (Phelan et al 2013 J. Am. Chem. Soc. 135 5372-4). Using density functional theory, we explore the electronic structure of both the phases and the effect of the introduction of extra BiS2 bilayers. Our results demonstrate that the S2 layers dope the bismuth-sulphur bands and this causes metallisation. The bands at the Fermi level are of clear two-dimensional character. One band manifold is confined to the two adjacent, square-lattice bismuth-sulphur planes, a second manifold is confined to the square lattice of sulphur dimers. We show that the introduction of extra BiS2 bilayers does not influence the electronic structure. Finally, we also show that spin-orbit coupling does not have any significant effect on the states close to the Fermi level at the energy scale considered

    Thermalization by a synthetic horizon

    Full text link
    Synthetic horizons in models for quantum matter provide an alternative route to explore fundamental questions of modern gravitational theory. Here, we apply these concepts to the problem of emergence of thermal quantum states in the presence of a horizon, by studying ground-state thermalization due to instantaneous horizon creation in a gravitational setting and its condensed matter analogue. By a sudden quench to position-dependent hopping amplitudes in a one-dimensional lattice model, we establish the emergence of a thermal state accompanying the formation of a synthetic horizon. The resulting temperature for long chains is shown to be identical to the corresponding Unruh temperature, provided that the post-quench Hamiltonian matches the entanglement Hamiltonian of the pre-quench system. Based on detailed analysis of the outgoing radiation we formulate the conditions required for the synthetic horizon to behave as a purely thermal source, paving a way to explore this interplay of quantum-mechanical and gravitational aspects experimentally

    Electronic and magnetic properties of superconducting LnLnO1x_{1−x}Fx_xBiS2_2 (LnLn = La, Ce, Pr, and Nd) from first principles

    Get PDF
    A density functional theory study of the BiS2 superconductors containing rare-earths: LnO1-x F x BiS2 (Ln  =  La, Ce, Pr, and Nd) is presented. We find that CeO0.5F0.5BiS2 has competing ferromagnetic and weak antiferromagnetic tendencies, the first one corresponding to experimental results. We show that PrO0.5F0.5BiS2 has a strong tendency for magnetic order, which can be ferromagnetic or antiferromagnetic depending on subtle differences in 4f orbital occupations. We demonstrate that NdO0.5F0.5BiS2 has a stable magnetic ground state with weak tendency to order. Finally, we show that the change of rare earth does not affect the Fermi surface, and predict that CeOBiS2 should display a pressure induced phase transition to a metallic, if not superconducting, phase under pressure.This is the final version of the article. It first appeared from IOP Science via http://dx.doi.org/10.1088/0953-8984/28/34/34550

    Efficient extreme-ultraviolet high-order wave mixing from laser-dressed silica

    Full text link
    The emission of high-order harmonics from solids \cite{ghimire11a,schubert14a,luu15a,golde08a} under intense laser-pulse irradiation is revolutionizing our understanding of strong-field solid-light interactions \cite{ghimire11a,schubert14a,luu15a,vampa15b,yoshikawa17a,hafez18a,jurgens20a}, while simultaneously opening avenues towards novel, all-solid, coherent, short-wavelength table-top sources with tailored emission profiles and nanoscale light-field control\cite{franz19a,roscamCLEO21}. To date, broadband spectra have been generated well into the extreme-ultraviolet (XUV) \cite{luu15a,luu18b,han19a,uzan20a}, but the comparatively low conversion efficiency still lags behind gas-based high-harmonic generation (HHG) sources \cite{luu15a,luu18b}, and have hindered wider-spread applications. Here, we overcome the low conversion efficiency by two-color wave mixing. A quantum theory reveals that our experiments follow a novel generation mechanism where the conventional interband and intraband nonlinear dynamics are boosted by Floquet-Bloch dressed states, that make solid HHG in the XUV more efficient by at least one order of magnitude. Emission intensity scalings that follow perturbative optical wave mixing, combined with the angular separation of the emitted frequencies, make our approach a decisive step for all-solid coherent XUV sources and for studying light-engineered materials
    corecore