162 research outputs found

    Hyperthermic Perfusion 16 Years After its First Clinical Applications

    Get PDF
    It is known that above-normal temperatures (42°-42.5°C) provoke selective damage to neoplastic cells. We used heated circulating blood as a method for heat transfer on patients with limb tumors. From October 1964 to December 1979, we treated a total of 198 patients with hyperthermic perfusion for melanoma of the limbs (91), osteosarcoma (57), and soft tissue sarcoma (50). For melanoma patients, the five-year survival rate, excluding Stage IV, was 60%. For patients with soft tissue sarcoma, the five-year survival rates were 53% and 56% for hyperthermic perfusion and hyperthermic antiblastic perfusion. respectively. For 29 patients with osteosarcoma, hyperthermic perfusion was combined with systematic amputation ofthe limb for a 60% survival rate over a five-year period. Newer studies with osteosarcoma patients involve a multistep treatment that saves the tumor-bearing limb without reducing survival rates. Our 16-year clinical trial demonstrates that hyperthermia is effective in curing some tumors of the limbs, especially osteosarcoma and melanoma. We believe that perfusion remains the most reliable heat transfer method for loco-regional treatment and perhaps even for whole-body treatment for limb tumors

    The first extensive study of an Imperial Roman Garden in the city of Rome. The Horti Lamiani

    Get PDF
    This paper presents the first systematic results of integrated plant macrofossil and pollen analyses from the Horti Lamiani (1st-3rd century ce), an aristocratic residence with a luxury garden which was established on the Esquilino (Esquiline Hill) in Rome during the time of the first Emperor, Caesar Augustus (27 bce-14 ce) and later became one of the most famous Imperial gardens around the ancient city. Different types of plant remains such as charcoal, seeds and fruits and pollen were recovered from pits and pots in the garden and reflect the presence of plants there. There seem to have been ornamental shrubs which were probably grown as decorative modelled hedges and/or isolated bushes, as well as cultivated trees. Several ornamental flowering plants grew in pots. Although this archaeobotanical assemblage could represent some patches of wild vegetation still growing in the study area at the time of the Imperial garden, it is likely that most of the identified plants were intentionally planted and organised to create a glimpse of the past wild landscape of Rome. They have special characteristics, such as bearing coloured flowers or fruits and offering shade, that made them suitable for embellishing a magnificent garden. Moreover this reflects the Roman desire to control nature, testified by the expansion of luxury gardens during the Imperial period and the spread of decorative horticultural techniques, like the miniaturisation of trees and shaping of trees and shrubs by topiary

    Status of charcoal canker on oak trees at a site of community importance: case study of the relict castelfidardo forest (Sic area it520008, castelfidardo, an, Italy)

    Get PDF
    Oaks are dominant and key tree species in Mediterranean forest ecosystems. However, in recent decades, oak forests have been heavily impacted by oak decline, a worldwide phenomenon exacerbated by climate change. The charcoal disease agent Biscogniauxia mediterranea is involved in the decline of Mediterranean oak formations in a variety of contexts. Here, we investigated the impact and role of B. mediterranea in the decline of oaks in Castelfidardo Forest, a relict wood of the late Holocene and a Site of Community Importance. We established five plots within which we recorded tree positions, any symptoms and signs of decline, association of B. mediterranea to declining trees, and deadwood and associated mycota. Of 471 oaks inspected, 7.0% showed brownish exudates on the stems, 46.9% showed epicormic shoots along the main trunk, and 24.4% showed black carbonaceous stromata on diseased branches and trunks. The decline was most severe for Quercus cerris, which comprised plots #4 and #5, at 50.0% (81/162 trees) and 29.0% (33/114), respectively; then for Quercus robur for plot #3, at 40.0% (38/95); and finally for Quercus pubescens for plots #1 and #2, at 13.7% (7/51) and 12.3% (6/49), respectively. Bark tissues were collected from trees with charcoal cankers and taken to the laboratory for microscopic examination and identification by mycological and molecular methods. This investigation revealed a close association between oaks with pronounced reduction of vitality and incidence of B. mediterranea. Deadwood was equally distributed among the five plots, and was heavily colonized by Basidiomycota. The high incidence of the charcoal canker pathogen B. mediterranea appeared to be related to environmental stresses. However, the absence of silvicultural management, high competition among physiologically mature trees, and the geographic isolation of this residual forest may have predisposed oaks to decline

    Phytophthora root and collar rot of Paulownia, a new disease for Europe

    Get PDF
    Paulownia species are fast growing trees native to China, which are being grown in managed plantings in several European countries for the production of wood and biomasses. In 2018, wilting, stunting, leaf yellowing, and collapse, as a consequence of root and crown rot, were observed in around 40% of trees of a 2-year-old planting of Paulownia elongata × P. fortunei in Calabria (Southern Italy). Two species of Phytophthora were consistently recovered from roots, basal stem bark, and rhizosphere soil of symptomatic trees and were identified as Ph. nicotianae and Ph. palmivora on the basis of both morphological characteristics and phylogenetic analysis of rDNA ITS sequences. Koch’s postulates were fulfilled by reproducing the symptoms on potted paulownia saplings transplanted into infested soil or stem-inoculated by wounding. Both Phytophthora species were pathogenic and caused root rot and stem cankers. Even though P. palmivora was the only species recovered from roots of naturally infected plants, in pathogenicity tests through infested soil P. nicotianae was more virulent. This is the first report of Phytophthora root and crown rot of a Paulownia species in Europe. Strategies to prevent this emerging disease include the use of healthy nursery plants, choice of well-drained soils for new plantations, and proper irrigation management

    Endophytic and epiphytic phyllosphere fungal communities are shaped by different environmental factors in a mediterranean ecosystem

    Get PDF
    The online version of this article (https://doi.org/10.1007/s00248-018-1161-9) contains supplementary material, which is available to authorized users.The diversity and factors influencing fimgal assemblages in phyllosphere of Mediterranean tree species have been barely studied, especially when endophytic and epiphytic communities are simultaneously considered. In this work, the endophytic and epiphytic fungal communities from olive tree phyllosphere were studied. This tree species is natural from the Mediterranean region and adapted to grow under adverse climatic conditions. The main objectives were to determine whether there are differences between both fungal communities and to examine whether different abiotic (climate-related) and biotic (plant organs) factors play a pivotal role in structuring these communities. Both communities differed in size and composition, with epiphytic community being richer and more abundant, displaying also a dominance of melanized fungi. Season was the major driver of community composition, especially of epiphytes. Other drivers shaping epiphytes were wind speed and temperature, while plant organ, rainfall, and temperature were the major drivers for endophytic composition. In contrast, canopy orientation caused slight variations in community composition of fungi, but with distinct effects in spring and autumn seasons. In conclusion, epiphytic and endophytic communities are not driven by the same factors. Several sources of variation undergo complex interactions to form and maintain phyllosphere fungal community in Mediterranean climates. Climatic parameters have influence on these fungal communities, suggesting that they are likely to be affected by climate changes in a near future.This work is funded by FEDER funds through COMPETE (Programa Operacional Factores de Competitividade) and by national funds by FCT (Fundacao para a Ciencia e a Tecnologia) within the framework of the project EXCL/AGR-PRO/0591/2012. T. Gomes thanks FCT, POPH-QREN, and FSE for PhD SFRH/BD/98127/2013 grant

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Mycorrhization of fagaceae forests within mediterranean ecosystems

    Get PDF
    Mediterranean Fagaceae forests are valuable due to their ecological and socioeconomic aspects. Some profitable plant species, such as Castanea (timber and chestnut), Quercus (timber and cork), and Fagus (timber), encounter in this habitat the excellent edaphoclimatic conditions to develop. All Fagaceae plants are commonly associated to ECM fungal species, which are found in these forests in quite stable communities, mainly enriched in Russulaceae and Telephoraceae species. Currently, the Mediterranean Basin is considered as one of the global biodiversity hotspots, since many of their endemic plant species are not found elsewhere and are now under threat. Due to climate changing and introduction of disease agents, Fagaceae forests are facing an adaptation challenge to both biotic and abiotic threats. Although ECM communities are highly disturbed by climate factors and tree disease incidence, they could play an important role in increasing water availability to the plant and also improving plant tree defense against pathogens. Recent advances, namely, on genomics and transcriptomics, are providing tools for increasing the understanding of Fagaceae mycorrhization process and stress responses to biotic and abiotic stresses. Such studies can provide new information for the implementation of the most adequate management policies for protecting threaten Mediterranean forests.info:eu-repo/semantics/publishedVersio

    Ectomycorrhizal fungal diversity and community structure associated with cork oak in different landscapes

    Get PDF
    Cork oak (Quercus suber L.) forests play an important ecological and economic role. Ectomycorrhizal fungi (ECMF) are key components for the sustainability and functioning of these ecosystems. The community structure and composition of ECMF associated with Q. suber in different landscapes of distinct Mediterranean bioclimate regions have not previously been compared. In this work, soil samples from cork oak forests residing in different bioclimates (arid, semi-arid, sub-humid, and humid) were collected and surveyed for ectomycorrhizal (ECM) root tips. A global analysis performed on 3565 ECM root tips revealed that the ECMF community is highly enriched in Russula, Tomentella, and Cenoccocum, which correspond to the ECMF genera that mainly contribute to community differences. The ECMF communities from the rainiest and the driest cork oak forests were distinct, with soils from the rainiest climates being more heterogeneous than those from the driest climates. The analyses of several abiotic factors on the ECMF communities revealed that bioclimate, precipitation, soil texture, and forest management strongly influenced ECMF structure. Shifts in ECMF with different hyphal exploration types were also detected among forests, with precipitation, forest system, and soil texture being the main drivers controlling their composition. Understanding the effects of environmental factors on the structuring of ECM communities could be the first step for promoting the sustainability of this threatened ecosystem.This work was supported by Fundacao Ciencia e Tecnologia (FCT/MCTES/PIDDAC, Portugal), under the project (PEst-OE/BIA/UI4046/2014; UID/MULTI/04046/2013) and PhD grant to F.R. (SFRH/BD/86519/2012)
    corecore