43 research outputs found

    Symmetry and Electronic Structure of Noble Metal Nanoparticles and the Role of Relativity

    Full text link
    High resolution photoelectron spectra of cold mass selected Cu_n-, Ag_n- and Au_n- with n =53-58 have been measured at a photon energy of 6.42 eV. The observed electron density of states is not the expected simple electron shell structure, but seems to be strongly influenced by electron-lattice interactions. Only Cu55- and Ag55- exhibit highly degenerate states. This is a direct consequence of their icosahedral symmetry, as is confirmed by density functional theory calculations. Neighboring sizes exhibit perturbed electronic structures, as they are formed by removal or addition of atoms to the icosahedron and therefore have lower symmetries. Gold clusters in the same size range show completely different spectra with almost no degeneracy, which indicates that they have structures of much lower symmetry. This behaviour is related to strong relativistic bonding effects in gold, as demonstrated by ab initio calculations for Au55-.Comment: 10 pages, 3 figure

    X-ray structure of the dimeric cytochrome bc1 complex from the soil bacterium Paracoccus denitrificans at 2.7-Ã… resolution

    Get PDF
    AbstractThe respiratory cytochrome bc1 complex is a fundamental enzyme in biological energy conversion. It couples electron transfer from ubiquinol to cytochrome c with generation of proton motive force which fuels ATP synthesis. The complex from the α-proteobacterium Paracoccus denitrificans, a model for the medically relevant mitochondrial complexes, lacked structural characterization. We show by LILBID mass spectrometry that truncation of the organism-specific, acidic N-terminus of cytochrome c1 changes the oligomerization state of the enzyme to a dimer. The fully functional complex was crystallized and the X-ray structure determined at 2.7-Å resolution. It has high structural homology to mitochondrial complexes and to the Rhodobacter sphaeroides complex especially for subunits cytochrome b and ISP. Species-specific binding of the inhibitor stigmatellin is noteworthy. Interestingly, cytochrome c1 shows structural differences to the mitochondrial and even between the two Rhodobacteraceae complexes. The structural diversity in the cytochrome c1 surface facing the ISP domain indicates low structural constraints on that surface for formation of a productive electron transfer complex. A similar position of the acidic N-terminal domains of cytochrome c1 and yeast subunit QCR6p is suggested in support of a similar function. A model of the electron transfer complex with membrane-anchored cytochrome c552, the natural substrate, shows that it can adopt the same orientation as the soluble substrate in the yeast complex. The full structural integrity of the P. denitrificans variant underpins previous mechanistic studies on intermonomer electron transfer and paves the way for using this model system to address open questions of structure/function relationships and inhibitor binding

    Separating and visualising protein assemblies by means of preparative mass spectrometry and microscopy

    Get PDF
    a b s t r a c t Many multi-protein assemblies exhibit characteristics which hamper their structural and dynamical characterization. These impediments include low copy number, heterogeneity, polydispersity, hydrophobicity, and intrinsic disorder. It is becoming increasingly apparent that both novel and hybrid structural biology approaches need to be developed to tackle the most challenging targets. Nanoelectrospray mass spectrometry has matured over the last decade to enable the elucidation of connectivity and composition of large protein assemblies. Moreover, comparing mass spectrometry data with transmission electron microscopy images has enabled the mapping of subunits within topological models. Here we describe a preparative form of mass spectrometry designed to isolate specific protein complexes from within a heterogeneous ensemble, and to 'soft-land' these target complexes for ex situ imaging. By building a retractable probe incorporating a versatile target holder, and modifying the ion optics of a commercial mass spectrometer, we show that we can steer the macromolecular ion beam onto a target for imaging by means of transmission electron microscopy and atomic force microscopy. Our data for the tetradecameric chaperonin GroEL show that not only are the molecular volumes of the landed particles consistent with the overall dimensions of the complex, but also that their gross topological features can be maintained

    Isoforms of U1-70k control subunit dynamics in the human spliceosomal U1 snRNP

    Get PDF
    Most human protein-encoding genes contain multiple exons that are spliced together, frequently in alternative arrangements, by the spliceosome. It is established that U1 snRNP is an essential component of the spliceosome, in human consisting of RNA and ten proteins, several of which are post- translationally modified and exist as multiple isoforms. Unresolved and challenging to investigate are the effects of these post translational modifications on the dynamics, interactions and stability of the particle. Using mass spectrometry we investigate the composition and dynamics of the native human U1 snRNP and compare native and recombinant complexes to isolate the effects of various subunits and isoforms on the overall stability. Our data reveal differential incorporation of four protein isoforms and dynamic interactions of subunits U1-A, U1-C and Sm-B/B’. Results also show that unstructured post- ranslationally modified C-terminal tails are responsible for the dynamics of Sm-B/B’ and U1-C and that their interactions with the Sm core are controlled by binding to different U1-70k isoforms and their phosphorylation status in vivo. These results therefore provide the important functional link between proteomics and structure as well as insight into the dynamic quaternary structure of the native U1 snRNP important for its function.This work was funded by: BBSRC (OVM), BBSRC and EPSRC (HH and NM), EU Prospects (HH), European Science Foundation (NM), the Royal Society (CVR), and fellowship from JSPS and HFSP (YM and DAPK respectively)

    Wie kleine Amyloid-β-Peptide zum großen Problem im Gehirn werden können

    No full text
    The formation of amyloid-β oligomers plays a key role in the onset of Alzheimer’s disease. We investigated the aggregation of amyloid-β oligomers by mass spectrometry and ion mobility spectrometry, revealing those structural properties, which lead to the formation of mature fibrils. We can show that the arrangement of the first oligomers is crucial for the topology of the resulting species, leading to the formation of non-toxic aggregates or fibrils

    LILBID-MS: using lasers to shed light on biomolecular architectures

    No full text
    Structural Biology has moved beyond the aim of simply identifying the components of a cellular subsystem towards analysing the dynamics and interactions of multiple players within a cell. This focal shift comes with additional requirements for the analytical tools used to investigate these systems of increased size and complexity, such as Native Mass Spectrometry, which has always been an important tool for structural biology. Scientific advance and recent developments, such as new ways to mimic a cell membrane for a membrane protein, have caused established methods to struggle to keep up with the increased demands. In this review, we summarize the possibilities, which Laser Induced Liquid Bead Ion Desorption (LILBID) mass spectrometry offers with regard to the challenges of modern structural biology, like increasingly complex sample composition, novel membrane mimics and advanced structural analysis, including next neighbor relations and the dynamics of complex formation

    <i>Mass</i>ign: An Assignment Strategy for Maximizing Information from the Mass Spectra of Heterogeneous Protein Assemblies

    No full text
    Electrospray ionization mass spectrometry (ESI-MS) has evolved into a powerful adjunct for structural biology, helping to unravel the quaternary structure of protein complexes. Increasing interest has led to the study of ever larger multicomponent systems. Investigating these large complexes with ESI has meant that progressively more complicated mass spectra have been recorded. Correct assignment of these spectra is essential to maximize the information content available. Here we present a new assignment strategy and a supporting software package that allows the investigation of large heterogeneous systems, previously beyond the scope of full spectral assignment due to their complexity. The strategy involves two parts. The first includes a peak fitting routine to determine charge state distributions and consequently the masses of the various subcomplexes. The second module distinguishes between solution and gas phase products depending on their mass to charge ratio and assigns these charge states to different subunit combinations. These fitting and assignment routines contain many internal checks for consistency and reveal mass shifts, dependent upon desolvation conditions and small molecule binding. Using a rotary ATPase as a working example, we show how this assignment strategy is capable of determining the stoichiometry and interactions of the 8 different subunits within this 29-subunit assembly

    LILBID laser dissociation curves: a mass spectrometry-based method for the quantitative assessment of dsDNA binding affinities

    No full text
    One current goal in native mass spectrometry is the assignment of binding affinities to noncovalent complexes. Here we introduce a novel implementation of the existing laser-induced liquid bead ion desorption (LILBID) mass spectrometry method: this new method, LILBID laser dissociation curves, assesses binding strengths quantitatively. In all LILBID applications, aqueous sample droplets are irradiated by 3 µm laser pulses. Variation of the laser energy transferred to the droplet during desorption affects the degree of complex dissociation. In LILBID laser dissociation curves, laser energy transfer is purposely varied, and a binding affinity is calculated from the resulting complex dissociation. A series of dsDNAs with different binding affinities was assessed using LILBID laser dissociation curves. The binding affinity results from the LILBID laser dissociation curves strongly correlated with the melting temperatures from UV melting curves and with dissociation constants from isothermal titration calorimetry, standard solution phase methods. LILBID laser dissociation curve data also showed good reproducibility and successfully predicted the melting temperatures and dissociation constants of three DNA sequences. LILBID laser dissociation curves are a promising native mass spectrometry binding affinity method, with reduced time and sample consumption compared to melting curves or titrations

    Bacterial F-type ATP synthases follow a well-choreographed assembly pathway

    No full text
    F-type ATP synthases are multiprotein complexes composed of two separate coupled motors (F1 and FO) generating adenosine triphosphate (ATP) as the universal major energy source in a variety of relevant biological processes in mitochondria, bacteria and chloroplasts. While the structure of many ATPases is solved today, the precise assembly pathway of F1FO-ATP synthases is still largely unclear. Here, we probe the assembly of the F1 complex from Acetobacterium woodii. Using laser induced liquid bead ion desorption (LILBID) mass spectrometry, we study the self-assembly of purified F1 subunits in different environments under non-denaturing conditions. We report assembly requirements and identify important assembly intermediates in vitro and in cellula. Our data provide evidence that nucleotide binding is crucial for in vitro F1 assembly, whereas ATP hydrolysis appears to be less critical. We correlate our results with activity measurements and propose a model for the assembly pathway of a functional F1 complex
    corecore