4,054 research outputs found

    Critical Current in the High-T_c Glass model

    Full text link
    The high-T_c glass model can be combined with the repulsive tt'--Hubbard model as microscopic description of the striped domains found in the high-T_c materials. In this picture the finite Hubbard clusters are the origin of the d-wave pairing. In this paper we show, that the glass model can also explain the critical currents usually observed in the high-T_c materials. We use two different approaches to calculate the critical current densities of the high-T_c glass model. Both lead to a strongly anisotropic critical current. Finally we give an explanation, why we expect nonetheless a nearly perfect isotropic critical current in the high-T_c superconductors.Comment: 8 pages with 5 eps-figures, LaTeX using RevTeX, accepted by Int.J.Mod.Phys.

    Diffractive wave guiding of hot electrons by the Au (111) herringbone reconstruction

    Full text link
    The surface potential of the herringbone reconstruction on Au(111) is known to guide surface-state electrons along the potential channels. Surprisingly, we find by scanning tunneling spectroscopy that hot electrons with kinetic energies twenty times larger than the potential amplitude (38 meV) are still guided. The efficiency even increases with kinetic energy, which is reproduced by a tight binding calculation taking the known reconstruction potential and strain into account. The guiding is explained by diffraction at the inhomogeneous electrostatic potential and strain distribution provided by the reconstruction.Comment: 10 pages, 9 figure

    Preferential antiferromagnetic coupling of vacancies in graphene on SiO_2: Electron spin resonance and scanning tunneling spectroscopy

    Full text link
    Monolayer graphene grown by chemical vapor deposition and transferred to SiO_2 is used to introduce vacancies by Ar^+ ion bombardment at a kinetic energy of 50 eV. The density of defects visible in scanning tunneling microscopy (STM) is considerably lower than the ion fluence implying that most of the defects are single vacancies. The vacancies are characterized by scanning tunneling spectroscopy (STS) on graphene and HOPG exhibiting a peak close to the Fermi level. The peak persists after air exposure up to 180 min, albeit getting broader. After air exposure for less than 60 min, electron spin resonance (ESR) at 9.6 GHz is performed. For an ion flux of 10/nm^2, we find a signal corresponding to a g-factor of 2.001-2.003 and a spin density of 1-2 spins/nm^2. The ESR signal consists of a mixture of a Gaussian and a Lorentzian of equal weight exhibiting a width down to 0.17 mT, which, however, depends on details of the sample preparation. The g-factor anisotropy is about 0.02%. Temperature dependent measurements reveal antiferromagnetic correlations with a Curie-Weiss temperature of -10 K. Albeit the electrical conductivity of graphene is significantly reduced by ion bombardment, the spin resonance induced change in conductivity is below 10^{-5}.Comment: 10 pages, 5 figures, discussion on STM images in the literature of defects in graphene adde

    Probing electron-electron interaction in quantum Hall systems with scanning tunneling spectroscopy

    Full text link
    Using low-temperature scanning tunneling spectroscopy applied to the Cs-induced two-dimensional electron system (2DES) on p-type InSb(110), we probe electron-electron interaction effects in the quantum Hall regime. The 2DES is decoupled from p-doped bulk states and exhibits spreading resistance within the insulating quantum Hall phases. In quantitative agreement with calculations we find an exchange enhancement of the spin splitting. Moreover, we observe that both the spatially averaged as well as the local density of states feature a characteristic Coulomb gap at the Fermi level. These results show that electron-electron interaction effects can be probed down to a resolution below all relevant length scales.Comment: supplementary movie in ancillary file

    Recognition map analysis and crop acreage estimation using Skylab EREP data

    Get PDF
    There are no author-identified significant results in this report

    Recognition map analysis and crop acreage estimation

    Get PDF
    There are no author-identified significant results in this report

    Apparent rippling with honeycomb symmetry and tunable periodicity observed by scanning tunneling microscopy on suspended graphene

    Full text link
    Suspended graphene is difficult to image by scanning probe microscopy due to the inherent van-der-Waals and dielectric forces exerted by the tip which are not counteracted by a substrate. Here, we report scanning tunneling microscopy data of suspended monolayer graphene in constant-current mode revealing a surprising honeycomb structure with amplitude of 50−-200 pm and lattice constant of 10-40 nm. The apparent lattice constant is reduced by increasing the tunneling current II, but does not depend systematically on tunneling voltage VV or scan speed vscanv_{\rm scan}. The honeycomb lattice of the rippling is aligned with the atomic structure observed on supported areas, while no atomic corrugation is found on suspended areas down to the resolution of about 3−43-4 pm. We rule out that the honeycomb structure is induced by the feedback loop using a changing vscanv_{\rm scan}, that it is a simple enlargement effect of the atomic resolution as well as models predicting frozen phonons or standing phonon waves induced by the tunneling current. Albeit we currently do not have a convincing explanation for the observed effect, we expect that our intriguing results will inspire further research related to suspended graphene.Comment: 10 pages, 7 figures, modified, more detailed discussion on errors in vdW parameter

    Bistability and oscillatory motion of natural nano-membranes appearing within monolayer graphene on silicon dioxide

    Full text link
    The recently found material graphene is a truly two-dimensional crystal and exhibits, in addition, an extreme mechanical strength. This in combination with the high electron mobility favours graphene for electromechanical investigations down to the quantum limit. Here, we show that a monolayer of graphene on SiO2 provides natural, ultra-small membranes of diameters down to 3 nm, which are caused by the intrinsic rippling of the material. Some of these nano-membranes can be switched hysteretically between two vertical positions using the electric field of the tip of a scanning tunnelling microscope (STM). They can also be forced to oscillatory motion by a low frequency ac-field. Using the mechanical constants determined previously, we estimate a high resonance frequency up to 0.4 THz. This might be favorable for quantum-electromechanics and is prospective for single atom mass spectrometers.Comment: 9 pages, 4 figure

    Linear-time list recovery of high-rate expander codes

    Full text link
    We show that expander codes, when properly instantiated, are high-rate list recoverable codes with linear-time list recovery algorithms. List recoverable codes have been useful recently in constructing efficiently list-decodable codes, as well as explicit constructions of matrices for compressive sensing and group testing. Previous list recoverable codes with linear-time decoding algorithms have all had rate at most 1/2; in contrast, our codes can have rate 1−ϵ1 - \epsilon for any ϵ>0\epsilon > 0. We can plug our high-rate codes into a construction of Meir (2014) to obtain linear-time list recoverable codes of arbitrary rates, which approach the optimal trade-off between the number of non-trivial lists provided and the rate of the code. While list-recovery is interesting on its own, our primary motivation is applications to list-decoding. A slight strengthening of our result would implies linear-time and optimally list-decodable codes for all rates, and our work is a step in the direction of solving this important problem
    • …
    corecore