4,368 research outputs found
Critical Current in the High-T_c Glass model
The high-T_c glass model can be combined with the repulsive tt'--Hubbard
model as microscopic description of the striped domains found in the high-T_c
materials. In this picture the finite Hubbard clusters are the origin of the
d-wave pairing. In this paper we show, that the glass model can also explain
the critical currents usually observed in the high-T_c materials. We use two
different approaches to calculate the critical current densities of the
high-T_c glass model. Both lead to a strongly anisotropic critical current.
Finally we give an explanation, why we expect nonetheless a nearly perfect
isotropic critical current in the high-T_c superconductors.Comment: 8 pages with 5 eps-figures, LaTeX using RevTeX, accepted by
Int.J.Mod.Phys.
Diffractive wave guiding of hot electrons by the Au (111) herringbone reconstruction
The surface potential of the herringbone reconstruction on Au(111) is known
to guide surface-state electrons along the potential channels. Surprisingly, we
find by scanning tunneling spectroscopy that hot electrons with kinetic
energies twenty times larger than the potential amplitude (38 meV) are still
guided. The efficiency even increases with kinetic energy, which is reproduced
by a tight binding calculation taking the known reconstruction potential and
strain into account. The guiding is explained by diffraction at the
inhomogeneous electrostatic potential and strain distribution provided by the
reconstruction.Comment: 10 pages, 9 figure
Preferential antiferromagnetic coupling of vacancies in graphene on SiO_2: Electron spin resonance and scanning tunneling spectroscopy
Monolayer graphene grown by chemical vapor deposition and transferred to
SiO_2 is used to introduce vacancies by Ar^+ ion bombardment at a kinetic
energy of 50 eV. The density of defects visible in scanning tunneling
microscopy (STM) is considerably lower than the ion fluence implying that most
of the defects are single vacancies. The vacancies are characterized by
scanning tunneling spectroscopy (STS) on graphene and HOPG exhibiting a peak
close to the Fermi level. The peak persists after air exposure up to 180 min,
albeit getting broader. After air exposure for less than 60 min, electron spin
resonance (ESR) at 9.6 GHz is performed. For an ion flux of 10/nm^2, we find a
signal corresponding to a g-factor of 2.001-2.003 and a spin density of 1-2
spins/nm^2. The ESR signal consists of a mixture of a Gaussian and a Lorentzian
of equal weight exhibiting a width down to 0.17 mT, which, however, depends on
details of the sample preparation. The g-factor anisotropy is about 0.02%.
Temperature dependent measurements reveal antiferromagnetic correlations with a
Curie-Weiss temperature of -10 K. Albeit the electrical conductivity of
graphene is significantly reduced by ion bombardment, the spin resonance
induced change in conductivity is below 10^{-5}.Comment: 10 pages, 5 figures, discussion on STM images in the literature of
defects in graphene adde
Probing electron-electron interaction in quantum Hall systems with scanning tunneling spectroscopy
Using low-temperature scanning tunneling spectroscopy applied to the
Cs-induced two-dimensional electron system (2DES) on p-type InSb(110), we probe
electron-electron interaction effects in the quantum Hall regime. The 2DES is
decoupled from p-doped bulk states and exhibits spreading resistance within the
insulating quantum Hall phases. In quantitative agreement with calculations we
find an exchange enhancement of the spin splitting. Moreover, we observe that
both the spatially averaged as well as the local density of states feature a
characteristic Coulomb gap at the Fermi level. These results show that
electron-electron interaction effects can be probed down to a resolution below
all relevant length scales.Comment: supplementary movie in ancillary file
Recognition map analysis and crop acreage estimation using Skylab EREP data
There are no author-identified significant results in this report
Recognition map analysis and crop acreage estimation
There are no author-identified significant results in this report
Apparent rippling with honeycomb symmetry and tunable periodicity observed by scanning tunneling microscopy on suspended graphene
Suspended graphene is difficult to image by scanning probe microscopy due to
the inherent van-der-Waals and dielectric forces exerted by the tip which are
not counteracted by a substrate. Here, we report scanning tunneling microscopy
data of suspended monolayer graphene in constant-current mode revealing a
surprising honeycomb structure with amplitude of 50200 pm and lattice
constant of 10-40 nm. The apparent lattice constant is reduced by increasing
the tunneling current , but does not depend systematically on tunneling
voltage or scan speed . The honeycomb lattice of the rippling
is aligned with the atomic structure observed on supported areas, while no
atomic corrugation is found on suspended areas down to the resolution of about
pm. We rule out that the honeycomb structure is induced by the feedback
loop using a changing , that it is a simple enlargement effect of
the atomic resolution as well as models predicting frozen phonons or standing
phonon waves induced by the tunneling current. Albeit we currently do not have
a convincing explanation for the observed effect, we expect that our intriguing
results will inspire further research related to suspended graphene.Comment: 10 pages, 7 figures, modified, more detailed discussion on errors in
vdW parameter
Bistability and oscillatory motion of natural nano-membranes appearing within monolayer graphene on silicon dioxide
The recently found material graphene is a truly two-dimensional crystal and
exhibits, in addition, an extreme mechanical strength. This in combination with
the high electron mobility favours graphene for electromechanical
investigations down to the quantum limit. Here, we show that a monolayer of
graphene on SiO2 provides natural, ultra-small membranes of diameters down to 3
nm, which are caused by the intrinsic rippling of the material. Some of these
nano-membranes can be switched hysteretically between two vertical positions
using the electric field of the tip of a scanning tunnelling microscope (STM).
They can also be forced to oscillatory motion by a low frequency ac-field.
Using the mechanical constants determined previously, we estimate a high
resonance frequency up to 0.4 THz. This might be favorable for
quantum-electromechanics and is prospective for single atom mass spectrometers.Comment: 9 pages, 4 figure
Linear-time list recovery of high-rate expander codes
We show that expander codes, when properly instantiated, are high-rate list
recoverable codes with linear-time list recovery algorithms. List recoverable
codes have been useful recently in constructing efficiently list-decodable
codes, as well as explicit constructions of matrices for compressive sensing
and group testing. Previous list recoverable codes with linear-time decoding
algorithms have all had rate at most 1/2; in contrast, our codes can have rate
for any . We can plug our high-rate codes into a
construction of Meir (2014) to obtain linear-time list recoverable codes of
arbitrary rates, which approach the optimal trade-off between the number of
non-trivial lists provided and the rate of the code. While list-recovery is
interesting on its own, our primary motivation is applications to
list-decoding. A slight strengthening of our result would implies linear-time
and optimally list-decodable codes for all rates, and our work is a step in the
direction of solving this important problem
- …