73 research outputs found

    Transcending Scale Dependence in Identifying Habitat with Resource Selection Functions

    Get PDF
    Multi-scale resource selection modeling is used to identify factors that limit species distributions across scales of space and time. This multi-scale nature of habitat suitability complicates the translation of inferences to single, spatial depictions of habitat required for conservation of species. We estimated resource selection functions (RSFs) across three scales for a threatened ungulate, woodland caribou (Rangifer tarandus caribou), with two objectives: (1) to infer the relative effects of two forms of anthropogenic disturbance (forestry and linear features) on woodland caribou distributions at multiple scales and (2) to estimate scale-integrated resource selection functions (SRSFs) that synthesize results across scales for management-oriented habitat suitability mapping. We found a previously undocumented scale-specific switch in woodland caribou response to two forms of anthropogenic disturbance. Caribou avoided forestry cut-blocks at broad scales according to first-and second-order RSFs and avoided linear features at fine scales according to third-order RSFs, corroborating predictions developed according to predator-mediated effects of each disturbance type. Additionally, a single SRSF validated as well as each of three single-scale RSFs when estimating habitat suitability across three different spatial scales of prediction. We demonstrate that a single SRSF can be applied to predict relative habitat suitability at both local and landscape scales in support of critical habitat identification and species recovery

    Accelerated phosphatidylcholine turnover in macrophages promotes adipose tissue inflammation in obesity.

    Get PDF
    White adipose tissue (WAT) inflammation contributes to the development of insulin resistance in obesity. While the role of adipose tissue macrophage (ATM) pro-inflammatory signalling in the development of insulin resistance has been established, it is less clear how WAT inflammation is initiated. Here, we show that ATMs isolated from obese mice and humans exhibit markers of increased rate of de novo phosphatidylcholine (PC) biosynthesis. Macrophage-specific knockout of phosphocholine cytidylyltransferase A (CCTα), the rate-limiting enzyme of de novo PC biosynthesis pathway, alleviated obesity-induced WAT inflammation and insulin resistance. Mechanistically, CCTα-deficient macrophages showed reduced ER stress and inflammation in response to palmitate. Surprisingly, this was not due to lower exogenous palmitate incorporation into cellular PCs. Instead, CCTα-null macrophages had lower membrane PC turnover, leading to elevated membrane polyunsaturated fatty acid levels that negated the pro-inflammatory effects of palmitate. Our results reveal a causal link between obesity-associated increase in de novo PC synthesis, accelerated PC turnover and pro-inflammatory activation of ATMs

    Surface gas measurements and related studies for the characterization and monitoring of geological CO2 storage sites; experiences at Weyburn and in Salah.

    Get PDF
    Preliminary baseline soil gas data collected in the summer and autumn of 2001 above the Phase 1A injection area of the EnCana Enhanced Oil Recovery project at the Weyburn oilfield in south Saskatchewan was presented at GHGT-6 in Kyoto. Data can now be presented for all three years of the study with conclusions, the predominant one being that the major controls on soil gas levels are seasonal and meteorological with no indications of leakage from depth. In the autumns of 2002 and 2003 further in situ monitoring of CO2, CO2 flux, O2, CH4, radon (222Rn) and thoron (220Rn) was carried out. Soil gas samples were also collected for laboratory analysis of helium, permanent gases, sulphur species and light hydrocarbons. All sampling was repeated over the same 360 point sampling grid and more detailed profiles for both follow-up years. Marked changes in CO2 levels (especially flux) for each of the three-year datasets indicate changes in surface conditions, rather than CO2 from a deeper source. The radon and thoron data was found to be similar for the three years but appears to vary in response to drift composition, and seasonal effects, rather than migration from a deep source. In 2003 further work was agreed in addition to the main grid and profile data. A control area was sampled for the same suite of gases, 10km to the northwest of the oil field. It included similar topography, land use and drift composition to the main sampling grid. There were 35 sample locations on a 7 x 5 point grid with 100m spacing and two additional sites. Early conclusions indicate that the soil gas results in the control area are very similar to those from the main grid, vindicating control site selection and further supporting a lack of deeply sourced CO2 over the injection area. Along with the control site, five zones of possible CO2 leakage were also surveyed and sampled. Two cross a river lineament that may be associated with deep faulting, two were abandoned oil well sites and one site overlays a deep salt dissolution feature. (Unfortunately CO2 flux and gamma measurements were not carried out at these sites.) A northeast/southwest trending lineament, just north of the main grid, was sampled along two profiles perpendicular to the feature, with an increased density of sampling over the feature. The feature generally followed an incised river valley and anomalous CO2 was only detected on the valley floor, where it would be expected as there was lush vegetation in this zone. There were no coincident anomalies for other gases. Soils around two abandoned wells were also sampled. A 16-site grid was surveyed around each well. One well had been completely abandoned and the other was suspended due to failed casing. Such boreholes represent possible points of weakness that may be routes for CO2 migration. The well with failed casing had weakly anomalous CO2 locally to the south, again unmatched for other gases. The fully abandoned well had background CO2 values. Two perpendicular profiles of 10 sites at 25m spacing were sampled for soil gas over the mapped centre of the dissolution feature. Background values were obtained. In 2003 two vertical profiles were performed both indicating an increase in CO2 to a depth maximum of 1.80m; this increase is matched by a corresponding decrease only in O2, indicating biological respiration. Radon concentration indicated no anomalies. Portable gamma spectrometric data was collected in 2003 over the west-centre area of the grid, the profiles and over the control grid. The composition of soils from both areas was found to be very similar.PublishedBerkeley, California4.5. Degassamento naturaleope

    Breaking Down the Problem: Optical Transitions, Electronic Structure, and Photoconductivity in Conjugated Polymer PCDTBT and in Its Separate Building Blocks

    Get PDF
    Conjugated polymers with alternating electron-withdrawing and electron-donating groups along their backbone (donor–acceptor copolymers) have recently attracted attention due to high power conversion efficiency in bulk heterojunction solar cells. In an effort to understand how the bandgap in a typical donor–acceptor copolymer is reduced by internal charge transfer character and what the implications of this charge transfer are, we have synthesized the isolated repeat unit (CDTBT) of the photovoltaically highly successful PCDTBT polymer. We compare here the spectroscopic and electrochemical properties of the polymer, the repeat unit, and the separate carbazole donor and dithienylbenzothiadiazole acceptor moieties (CB and dTBT, respectively) in the solid state and in solutions of various polarity. The results are interpreted with the help of time-dependent density functional theory (TD-DFT) calculations. We identify the dominant electronic transitions responsible for the first two absorption bands in the “camel back” spectrum of PCDTBT as partial charge transfer transitions with significant delocalization in the directly excited states. The low bandgap, overall shape, and partial charge transfer character of the PCDTBT absorption spectrum originate from transitions in the dTBT unit. The attached CB moiety extends the conjugation length in CDTBT, rather than acting as a localized donor. Further electronic delocalization, leading to a relatively small reduction in bandgap, occurs upon polymerization. We use our finding of higher delocalization following excitation in the second absorption band to explain the increased yield of photogenerated charges from this band in PCDTBT solid thin films. Moreover, we point out the importance of initial delocalization in the functioning of bulk heterojunction solar cells. The results presented here are therefore not only highly important for a better understanding of donor–acceptor copolymers in general but can also potentially guide the strategic development of future photovoltaic materials

    Human resident liver myeloid cells protect against metabolic stress in obesity

    Get PDF
    Although multiple populations of macrophages have been described in the human liver, their function and turnover in patients with obesity at high risk of developing non-alcoholic fatty liver disease (NAFLD) and cirrhosis are currently unknown. Herein, we identify a specific human population of resident liver myeloid cells that protects against the metabolic impairment associated with obesity. By studying the turnover of liver myeloid cells in individuals undergoing liver transplantation, we find that liver myeloid cell turnover differs between humans and mice. Using single-cell techniques and flow cytometry, we determine that the proportion of the protective resident liver myeloid cells, denoted liver myeloid cells 2 (LM2), decreases during obesity. Functional validation approaches using human 2D and 3D cultures reveal that the presence of LM2 ameliorates the oxidative stress associated with obese conditions. Our study indicates that resident myeloid cells could be a therapeutic target to decrease the oxidative stress associated with NAFLD

    Computer modeling of the activation processes of the aromatic nucleophilic substitution mechanism

    No full text
    The activation processes of aromatic nucleophilic substitution mechanism (either by nitro groups or by coordination to the Cr(CO)3 moiety) are investigated using a new molecular graphics technique, based on the evaluation of a local reactivity index made of intermolecular energies calculated from extended HĂĽckel wavefunctions. In order to facilitate the interpretation, the reactivity index is represented using computer graphics techniques as three-dimensional models generated from isoenergy contour surfaces. The results lead to a clear understanding of the activation processes of the substitution mechanism
    • …
    corecore