8 research outputs found

    Study of the role of secreted peptides by the arbuscular mycorrhizal fungus Rhizophagus irregularis

    No full text
    La symbiose mycorhizienne Ă  arbuscules (MA) est une association bĂ©nĂ©fique Ă©tablie entre les membres d'un ancien sous-phylum de champignons, les GlomĂ©romycĂštes, et les racines de la majoritĂ© des plantes terrestres. Les champignons MA procurent de l'eau et des minĂ©raux (azote et phosphore principalement) Ă  leur plante hĂŽte et obtiennent de cette derniĂšre des molĂ©cules carbonĂ©es sous forme d'hexoses et de lipides. Des Ă©tudes rĂ©centes ont montrĂ© que certaines protĂ©ines sĂ©crĂ©tĂ©es par les champignons MA peuvent ĂȘtre des rĂ©gulateurs importants de l'association (Kloppholz et al., 2011 ; Tsuzuki et al., 2016). Notre objectif Ă©tait d'identifier de nouvelles protĂ©ines fongiques contribuant Ă  la mise en place de la symbiose. Des protĂ©ines prĂ©dites pour ĂȘtre prĂ©fĂ©rentiellement sĂ©crĂ©tĂ©es par le champignon MA Rhizophagus irregularis dans les racines ont Ă©tĂ© identifiĂ©es au dĂ©but de ma thĂšse (Kamel et al., 2017). Certaines d'entre-elles prĂ©sentaient une structure ressemblant aux prĂ©curseurs de phĂ©romones sexuelles d'AscomycĂštes. Ces protĂ©ines sont connues pour ĂȘtre maturĂ©es dans les voies de sĂ©crĂ©tion en petits peptides qui sont ensuite sĂ©crĂ©tĂ©s. Leur reconnaissance par un rĂ©cepteur couplĂ© Ă  la protĂ©ine G (GPCR) aboutit Ă  la fusion cellulaire de deux types sexuels opposĂ©s. Dans le cas de R. irregularis, seule la reproduction clonale a Ă©tĂ© dĂ©crite, mais des donnĂ©es gĂ©nomiques rĂ©centes remettent en question son statut d'organisme asexuĂ© (Ropars et al., 2016). Une grande partie de ma thĂšse a Ă©tĂ© dĂ©diĂ©e Ă  la caractĂ©risation fonctionnelle de ce type de peptides chez R. irregularis. Nous avons montrĂ© que deux peptides Ă©taient effectivement produits et sĂ©crĂ©tĂ©s par R. irregularis. L'utilisation de peptides synthĂ©tiques nous a permis de mettre en Ă©vidence que l'un d'eux stimulait la colonisation de M. truncatula mais Ă©tait Ă©galement perçu par le champignon lui-mĂȘme, induisant la transcription de son propre gĂšne prĂ©curseur et d'un GPCR. Ce peptide stimulateur de la symbiose est composĂ© de seulement trois acides aminĂ©s et il peut ĂȘtre produit Ă  partir de trois prĂ©curseurs protĂ©iques. Par des approches de gĂ©nĂ©tique inverse (HIGS et VIGS), nous avons confirmĂ© l'importance de ces prĂ©curseurs dans l'Ă©tablissement de la symbiose.[...]Arbuscular Mycorrhizal (AM) symbiosis is a beneficial association established between members of an ancient subphylum of fungi, the Glomeromycotina, and the roots of the majority of terrestrial plants. AM fungi provide water and minerals (mainly nitrogen and phosphorus) to their host plant in exchange for organic carbon in the form of hexoses and lipids. Recent studies have shown that certain proteins secreted by AM fungi are important symbiosis regulators (Kloppholz et al., 2011, Tsuzuki et al., 2016). Our aim was to identify new fungal proteins involved in the establishment of symbiosis. Proteins predicted to be preferentially secreted by the AM fungus Rhizophagus irregularis in the roots were identified at the beginning of my thesis (Kamel et al., 2017). We noticed that some of them had a structure resembling the sex pheromone precursors of Ascomycota. These proteins are known to be processed in the secretory pathway into small peptides which are then secreted. Their recognition by a G protein-coupled receptor (GPCR) leads to cell fusion of two opposite sex types. In the case of R. irregularis, only clonal reproduction has been described. However, recent genomic data question its status as an asexual organism (Ropars et al., 2016). A large part of my thesis was dedicated to the functional characterization of this type of processed peptides in R. irregularis. We show that two of them are actually produced and secreted by R. irregularis. Treatments with synthetic forms of these peptides revealed that one of them stimulated the colonization of M. truncatula but was also perceived by the fungus itself, inducing the transcription of its own precursor gene and of a GPCR gene. This symbiosis-stimulating peptide is composed of only three amino acids and can be produced from three different protein precursors. Using reverse genetics (HIGS and VIGS), we confirmed the importance of these precursors in the symbiosis establishment. [...

    Etude de peptides sécrétés par le champignon mycorhizien à arbuscules Rhizophagus irregularis

    No full text
    La symbiose mycorhizienne Ă  arbuscules (MA) est une association bĂ©nĂ©fique Ă©tablie entre les membres d'un ancien sous-phylum de champignons, les GlomĂ©romycĂštes, et les racines de la majoritĂ© des plantes terrestres. Les champignons MA procurent de l'eau et des minĂ©raux (azote et phosphore principalement) Ă  leur plante hĂŽte et obtiennent de cette derniĂšre des molĂ©cules carbonĂ©es sous forme d'hexoses et de lipides. Des Ă©tudes rĂ©centes ont montrĂ© que certaines protĂ©ines sĂ©crĂ©tĂ©es par les champignons MA peuvent ĂȘtre des rĂ©gulateurs importants de l'association (Kloppholz et al., 2011 ; Tsuzuki et al., 2016). Notre objectif Ă©tait d'identifier de nouvelles protĂ©ines fongiques contribuant Ă  la mise en place de la symbiose. Des protĂ©ines prĂ©dites pour ĂȘtre prĂ©fĂ©rentiellement sĂ©crĂ©tĂ©es par le champignon MA Rhizophagus irregularis dans les racines ont Ă©tĂ© identifiĂ©es au dĂ©but de ma thĂšse (Kamel et al., 2017). Certaines d'entre-elles prĂ©sentaient une structure ressemblant aux prĂ©curseurs de phĂ©romones sexuelles d'AscomycĂštes. Ces protĂ©ines sont connues pour ĂȘtre maturĂ©es dans les voies de sĂ©crĂ©tion en petits peptides qui sont ensuite sĂ©crĂ©tĂ©s. Leur reconnaissance par un rĂ©cepteur couplĂ© Ă  la protĂ©ine G (GPCR) aboutit Ă  la fusion cellulaire de deux types sexuels opposĂ©s. Dans le cas de R. irregularis, seule la reproduction clonale a Ă©tĂ© dĂ©crite, mais des donnĂ©es gĂ©nomiques rĂ©centes remettent en question son statut d'organisme asexuĂ© (Ropars et al., 2016). Une grande partie de ma thĂšse a Ă©tĂ© dĂ©diĂ©e Ă  la caractĂ©risation fonctionnelle de ce type de peptides chez R. irregularis. Nous avons montrĂ© que deux peptides Ă©taient effectivement produits et sĂ©crĂ©tĂ©s par R. irregularis. L'utilisation de peptides synthĂ©tiques nous a permis de mettre en Ă©vidence que l'un d'eux stimulait la colonisation de M. truncatula mais Ă©tait Ă©galement perçu par le champignon lui-mĂȘme, induisant la transcription de son propre gĂšne prĂ©curseur et d'un GPCR. Ce peptide stimulateur de la symbiose est composĂ© de seulement trois acides aminĂ©s et il peut ĂȘtre produit Ă  partir de trois prĂ©curseurs protĂ©iques. Par des approches de gĂ©nĂ©tique inverse (HIGS et VIGS), nous avons confirmĂ© l'importance de ces prĂ©curseurs dans l'Ă©tablissement de la symbiose. Enfin, des approches de sĂ©quençage ARN, menĂ©es pour identifier les voies rĂ©gulĂ©es par le peptide, ont rĂ©vĂ©lĂ© que ce dernier induisait l'expression de gĂšnes connus pour ĂȘtre associĂ©s Ă  la reproduction sexuĂ©e chez d'autres champignons. Nous avons ensuite menĂ© une analyse bioinformatique pour identifier ce type de prĂ©curseurs de peptides dans 250 gĂ©nomes fongiques. Cette Ă©tude rĂ©vĂšle que les GlomĂ©romycĂštes ne sont pas les seuls champignons Ă  avoir acquis une diversitĂ© de protĂ©ines ayant une structure similaire Ă  celle des prĂ©curseurs de phĂ©romones sexuelles. Enfin, nous avons dĂ©couvert que les champignons MA ont une caractĂ©ristique singuliĂšre, celle de possĂ©der des gĂšnes appartenant Ă  la famille CLE. Ces gĂšnes sont connus chez les plantes pour coder des hormones peptidiques rĂ©gulatrices de nombreux processus dĂ©veloppementaux. Nous avons montrĂ© que l'un de ces peptides, produit par R. irregularis, modifie le dĂ©veloppement racinaire et stimule la colonisation de M. truncatula. En conclusion, nous avons dĂ©couvert plusieurs peptides sĂ©crĂ©tĂ©s par les champignons MA impliquĂ©s dans l'Ă©tablissement de la symbiose. Certains d'entre eux sont des peptides CLE comme ceux connus chez les plantes. D'autres proviennent de la maturation de protĂ©ines Ă  sĂ©quences rĂ©pĂ©tĂ©es habituellement connues comme prĂ©curseurs de phĂ©romones sexuelles. Nos rĂ©sultats mettent donc en Ă©vidence que les champignons MA et les plantes partagent certaines hormones peptidiques. De plus, ils apportent des arguments soutenant l'Ă©ventuelle existence d'une reproduction sexuĂ©e chez les champignons MA, mais ils Ă©tayent Ă©galement l'hypothĂšse que de nombreux peptides fongiques maturĂ©s comme des phĂ©romones sexuelles jouent en fait d'autres rĂŽles biologiques.Arbuscular Mycorrhizal (AM) symbiosis is a beneficial association established between members of an ancient subphylum of fungi, the Glomeromycotina, and the roots of the majority of terrestrial plants. AM fungi provide water and minerals (mainly nitrogen and phosphorus) to their host plant in exchange for organic carbon in the form of hexoses and lipids. Recent studies have shown that certain proteins secreted by AM fungi are important symbiosis regulators (Kloppholz et al., 2011, Tsuzuki et al., 2016). Our aim was to identify new fungal proteins involved in the establishment of symbiosis. Proteins predicted to be preferentially secreted by the AM fungus Rhizophagus irregularis in the roots were identified at the beginning of my thesis (Kamel et al., 2017). We noticed that some of them had a structure resembling the sex pheromone precursors of Ascomycota. These proteins are known to be processed in the secretory pathway into small peptides which are then secreted. Their recognition by a G protein-coupled receptor (GPCR) leads to cell fusion of two opposite sex types. In the case of R. irregularis, only clonal reproduction has been described. However, recent genomic data question its status as an asexual organism (Ropars et al., 2016). A large part of my thesis was dedicated to the functional characterization of this type of processed peptides in R. irregularis. We show that two of them are actually produced and secreted by R. irregularis. Treatments with synthetic forms of these peptides revealed that one of them stimulated the colonization of M. truncatula but was also perceived by the fungus itself, inducing the transcription of its own precursor gene and of a GPCR gene. This symbiosis-stimulating peptide is composed of only three amino acids and can be produced from three different protein precursors. Using reverse genetics (HIGS and VIGS), we confirmed the importance of these precursors in the symbiosis establishment. Finally, by using a RNA sequencing approach to identify pathways regulated by the peptide, we showed that the peptide induces expression of genes known, in other fungi, to be associated with sexual reproduction. We then conducted a bioinformatics analysis to identify this type of precursor peptides in 250 fungal genomes. We found that Glomeromycotina are not the only fungi that have acquired a diversity of proteins having a structure similar to sexual pheromone precursors. Finally, we discovered that AM fungi have a singular characteristic among fungi: they possess genes belonging to the CLE family. These genes are known in plants to encode peptide hormones that regulate many developmental processes. We showed that one of these peptides, produced here by the fungus R. irregularis, modifies root development and stimulates colonization of M. truncatula. In conclusion, we discovered several peptides secreted by AM fungi involved in the establishment of symbiosis. Some of them are CLE peptides like those known in plants. Others come from the processing of proteins with repeated sequences usually known as precursors of sex pheromones. Our results therefore show that AM fungi and plants share certain peptide hormones. In addition, they provide some arguments supporting the possible existence of sexual reproduction in AM fungi, but they also support the hypothesis that many fungal peptides processed as sex pheromones, in fact, play other biological roles

    Arbuscular mycorrhizal fungi possess a CLAVATA3/embryo surrounding region‐related gene that positively regulates symbiosis

    No full text
    International audienceThe arbuscular mycorrhizal (AM) symbiosis is a beneficial association established between land plants and the members of a subphylum of fungi, the Glomeromycotina. How the two symbiotic partners regulate their association is still enigmatic. Secreted fungal peptides are candidates for regulating this interaction.We searched for fungal peptides with similarities with known plant signalling peptides.We identified CLAVATA (CLV)/EMBRYO SURROUNDING REGION (ESR)-RELATED PROTEIN (CLE) genes in phylogenetically distant AM fungi: four Rhizophagus species and one Gigaspora species. These CLE genes encode a signal peptide for secretion and the conserved CLE C-terminal motif. They seem to be absent in the other fungal clades. Rhizophagus irregularis and Gigaspora rosea CLE genes (RiCLE1 and GrCLE1) are transcriptionally induced in symbiotic vs asymbiotic conditions. Exogenous application of synthetic RiCLE1 peptide on Medicago truncatula affects root architecture, by slowing the apical growth of primary roots and stimulating the formation of lateral roots. In addition, pretreatment of seedlings with RiCLE1 peptide stimulates mycorrhization.Our findings demonstrate for the first time that in addition to plants and nematodes, AM fungi also possess CLE genes. These results pave the way for deciphering new mechanisms by which AM fungi modulate plant cellular responses during the establishment of AM symbiosis

    Identification of new signalling peptides through a genome-wide survey of 250 fungal secretomes

    No full text
    Abstract Background Many small peptides regulate eukaryotic cell biology. In fungi, some of these peptides are produced after KEX2 protease activity on proteins displaying repetitions of identical or nearly identical motifs. Following this endoprotease activity, peptides are released in the extracellular space. This type of protein maturation is involved in the production of the α-type sexual pheromone in Ascomycota. In other cases, this processing allows the production of secreted peptides regulating fungal cell wall structure or acting as mycotoxins. In this work, we report for the first time a genome-wide search of KEX2-processed repeat proteins that we call KEPs. We screened the secreted proteins of 250 fungal species to compare their KEP repertoires with regard to their lifestyle, morphology or lineage. Results Our analysis points out that nearly all fungi display putative KEPs, suggesting an ancestral origin common to all opisthokonts. As expected, our pipeline identifies mycotoxins but also α-type sexual pheromones in Ascomycota that have not been explored so far, and unravels KEP-derived secreted peptides of unknown functions. Some species display an expansion of this class of proteins. Interestingly, we identified conserved KEPs in pathogenic fungi, suggesting a role in virulence. We also identified KEPs in Basidiomycota with striking similarities to Ascomycota α-type sexual pheromones, suggesting they may also play alternative roles in unknown signalling processes. Conclusions We identified putative, new, unexpected secreted peptides that fall into different functional categories: mycotoxins, hormones, sexual pheromones, or effectors that promote colonization during host-microbe interactions. This wide survey will open new avenues in the field of small-secreted peptides in fungi that are critical regulators of their intimate biology and modulators of their interaction with the environment

    Correction to: Identification of new signalling peptides through a genome-wide survey of 250 fungal secretomes

    No full text
    Following the publication of this article [1] the authors noted that the image in Fig. 1 was incorrect

    The Comparison of Expressed Candidate Secreted Proteins from Two Arbuscular Mycorrhizal Fungi Unravels Common and Specific Molecular Tools to Invade Different Host Plants

    Get PDF
    Arbuscular mycorrhizal fungi (AMF), belonging to the fungal phylum Glomeromycota, form mutualistic symbioses with roots of almost 80% of land plants. The release of genomic data from the ubiquitous AMF Rhizophagus irregularis revealed that this species possesses a large set of putative secreted proteins (RiSPs) that could be of major importance for establishing the symbiosis. In the present study, we aimed to identify SPs involved in the establishment of AM symbiosis based on comparative gene expression analyses. We first curated the secretome of the R. irregularis DAOM 197198 strain based on two available genomic assemblies. Then we analyzed the expression patterns of the putative RiSPs obtained from the fungus in symbiotic association with three phylogenetically distant host plants—a monocot, a dicot and a liverwort—in comparison with non-symbiotic stages. We found that 33 out of 84 RiSPs induced in planta were commonly up-regulated in these three hosts. Most of these common RiSPs are small proteins of unknown function that may represent putative host non-specific effector proteins. We further investigated the expressed secretome of Gigaspora rosea, an AM fungal species phylogenetically distant from R. irregularis. G. rosea also presents original symbiotic features, a narrower host spectrum and a restrictive geographic distribution compared to R. irregularis. Interestingly, when analyzing up-regulated G. rosea SPs (GrSPs) in different hosts, a higher ratio of host-specific GrSPs was found compared to RiSPs. Such difference of expression patterns may mirror the restrained host spectrum of G. rosea compared to R. irregularis. Finally, we identified a set of conserved SPs, commonly up-regulated by both fungi in all hosts tested, that could correspond to common keys of AMF to colonize host plants. Our data thus highlight the specificities of two distant AM fungi and help in understanding their conserved and specific strategies to invade different hosts
    corecore