26,378 research outputs found

    Cosmic antimatter annihilation and the gamma-ray background spectrum

    Get PDF
    Cosmic antimatter annihilation and gamma ray background spectru

    Laser power conversion system analysis, volume 2

    Get PDF
    The orbit-to-ground laser power conversion system analysis investigated the feasibility and cost effectiveness of converting solar energy into laser energy in space, and transmitting the laser energy to earth for conversion to electrical energy. The analysis included space laser systems with electrical outputs on the ground ranging from 100 to 10,000 MW. The space laser power system was shown to be feasible and a viable alternate to the microwave solar power satellite. The narrow laser beam provides many options and alternatives not attainable with a microwave beam

    Laser power conversion system analysis, volume 1

    Get PDF
    The orbit-to-orbit laser energy conversion system analysis established a mission model of satellites with various orbital parameters and average electrical power requirements ranging from 1 to 300 kW. The system analysis evaluated various conversion techniques, power system deployment parameters, power system electrical supplies and other critical supplies and other critical subsystems relative to various combinations of the mission model. The analysis show that the laser power system would not be competitive with current satellite power systems from weight, cost and development risk standpoints

    RETROCAM: A Versatile Optical Imager for Synoptic Studies

    Full text link
    We present RETROCAM, an auxiliary CCD camera that can be rapidly inserted into the optical beam of the MDM 2.4m telescope. The speed and ease of reconfiguring the telescope to use the imager and a straightforward user interface permit the camera to be used during the course of other observing programs. This in turn encourages RETROCAM's use for a variety of monitoring projects.Comment: 6 pages, 6 figures, Accepted by A

    Merger of white dwarf-neutron star binaries: Prelude to hydrodynamic simulations in general relativity

    Full text link
    White dwarf-neutron star binaries generate detectable gravitational radiation. We construct Newtonian equilibrium models of corotational white dwarf-neutron star (WDNS) binaries in circular orbit and find that these models terminate at the Roche limit. At this point the binary will undergo either stable mass transfer (SMT) and evolve on a secular time scale, or unstable mass transfer (UMT), which results in the tidal disruption of the WD. The path a given binary will follow depends primarily on its mass ratio. We analyze the fate of known WDNS binaries and use population synthesis results to estimate the number of LISA-resolved galactic binaries that will undergo either SMT or UMT. We model the quasistationary SMT epoch by solving a set of simple ordinary differential equations and compute the corresponding gravitational waveforms. Finally, we discuss in general terms the possible fate of binaries that undergo UMT and construct approximate Newtonian equilibrium configurations of merged WDNS remnants. We use these configurations to assess plausible outcomes of our future, fully relativistic simulations of these systems. If sufficient WD debris lands on the NS, the remnant may collapse, whereby the gravitational waves from the inspiral, merger, and collapse phases will sweep from LISA through LIGO frequency bands. If the debris forms a disk about the NS, it may fragment and form planets.Comment: 28 pages, 25 figures, 6 table

    The multiple ionospheric probe Auroral ionospheric report

    Get PDF
    Multiple impedance and resonance probe payload for ionospheric property observation in Nike- Apache rocke

    Evapotranspiration of native vegetation in the closed basin of the San Luis Valley, Colorado

    Get PDF
    June 1987.Bibliography: page 21.Grant nos. 14-08-001-G895 and 14-08-0001-G1006; project no. 06; financed in part by the U.S. Department of the Interior, Geological Survey and Bureau of Reclamation, through the Colorado Water Resources Research Institute in cooperation with the U.S.D.A. Agricultural Research Service

    A role for chromosomal instability in the development of and selection for radioresistant cell variants

    Get PDF
    Chromosome instability is a common occurrence in tumour cells. We examined the hypothesis that the elevated rate of mutation formation in unstable cells can lead to the development of clones of cells that are resistant to the cancer therapy. To test this hypothesis, we compared chromosome instability to radiation sensitivity in 30 independently isolated clones of GM10115 human–hamster hybrid cells. There was a broader distribution of radiosensitivity and a higher mean SF 2 in chromosomally unstable clones. Cytogenetic and DNA double-strand break rejoining assays suggest that sensitivity was a function of DNA repair efficiency. In the unstable population, the more radioresistant clones also had significantly lower plating efficiencies. These observations suggest that chromosome instability in GM10115 cells can lead to the development of cell variants that are more resistant to radiation. In addition, these results suggest that the process of chromosome breakage and recombination that accompanies chromosome instability might provide some selective pressure for more radioresistant variants. © 2001 Cancer Research Campaign http://www.bjcancer.co
    • …
    corecore